Low-voltage current switches based on AlInGaAsP/InP thyristor heterostructures for nanosecond pulsed laser emitters (1.5 μm)
Podoskin A. A.
1, Shushkanov I.V.
1, Slipchenko S.O.
1, Pikhtin N.A.
1, Bagaev T.A.
1,2, Svetogorov V.N.
3, Yarotskaya I.V.
3, Ladugin M.A.
3, Marmalyuk A.A.
3, Simakov V.A.
31Ioffe Institute, St. Petersburg, Russia
2Russian Peoples’ Friendship University, Moscow, Russia
3“Polyus” Research Institute of M.F. Stelmakh Joint Stock Company, Moscow, Russia
Email: podoskin@mail.ioffe.ru
The study examines current switches based on InP thyristors designed for pulsed 1400-1600 nm laser emitters. The heterostructure of the switch includes an InP transistor section and an upper InP/AlInGaAs/InGaAsP heterodiode, simulating a laser heterostructure. For switch samples with an anode contact size of 200x250 μm and two control contacts of 200x250 μm, the ability to generate current pulses with durations of 3-5 ns and amplitudes exceeding 6-8 A at a supply voltage of 16 V was demonstrated. The pulse repetition frequency reached 100 kHz. Keywords: Thyristor, current switch.
- V. Molebny, P.F. McManamon, O. Steinvall, T. Kobayashi, W. Chen. Opt. Eng., 56 (3), 031220 (2017). DOI: 10.1117/1.OE.56.3.031220
- J. Rapp, J. Tachella, Y. Altmann, S. McLaughlin, V.K. Goyal. IEEE Signal Proc. Mag., 37 (4), 62 (2020). DOI: 10.1109/MSP.2020.2983772
- J.A. Curcio, C.C. Petty. JOSA, 41 (5), 302 (1951). DOI: 10.1364/JOSA.41.000302
- J. Glaser. IEEE Power Electron. Mag., 4 (1), 25 (2017). DOI: 10.1109/MPEL.2016.2643099
- A.A. Podoskin, I.V. Shushkanov, V.V. Shamakhov, A.E. Rizaev, M.I. Kondratov, A.A. Klimov, S.V. Zazulin, S.O. Slipchenko, N.A. Pikhtin. Quant. Electron., 53 (1), 1 (2023). DOI: 10.3103/S1068335623170104
- S.O. Slipchenko, A.A. Podoskin, V.S. Golovin, M.G. Rastegaeva, N.V. Voronkova, N.A. Pikhtin, T.A. Bagaev, M.A. Ladugin, A.A. Marmalyuk, V.A. Simakov. IEEE Phot. Techn. Lett., 33 (1), 11 (2020). DOI: 10.1109/LPT.2020.3040026
- S. Vainshtein, V. Zemlyakov, V. Egorkin, A. Maslevtsov, A. Filimonov. IEEE Trans. Pover Electron., 34 (4), 3689 (2018). DOI: 10.1109/TPEL.2018.2853563
- I. Prudaev, S. Vainshtein, Maksim G. Verkholetov, V. Oleinik, V. Kopyev. IEEE Ttans. Electron. Dev., 68 (1), 57 (2020). DOI: 10.1109/TED.2020.3039213
- A. Knigge, A. Klehr, H. Wenzel, A. Zeghuzi, J. Fricke, A. Maab dorf, A. Liero, G. Trankle. Semicond. Sci. Technol., 35 (6), 065016 (2020). DOI: 10.1088/1361-6641/ab8397
- N. Ammouri, H. Christopher, J. Fricke, A. Ginolas, A. Liero, A. Maassdorf, H. Wenzel, A. Knigge. Electron. Lett., 59 (1), 1 (2022). DOI: 10.22541/au.166520352.25121396/v1
- S. Slipchenko, A. Podoskin, A.V. Rozhkov, N. Pikhtin, I. Tarasov, T. Bagaev, M. Ladugin, A. Marmalyuk, A. Padalitsa, V. Simakov. IEEE Phot.Techn. Lett., 27 (3), 307 (2014). DOI: 10.1109/LPT.2014.2370064
- T. Bagaev, M. Ladugin, A. Padalitsa, A. Marmalyuk, Y. Kurnyavko, A. Lobintsov, A.I. Danilov, S. Sapozhnikov, V.V. Krichevskii, M.V. Zverkov, V. Konyaev, V. Simakov, S. Slipchenko, A. Podoskin, N. Pikhtin. Quant. Electron., 49 (11), 1001 (2020). DOI: 10.1070/qel17104
- S.O. Slipchenko, A.A. Podoskin, P.S. Gavrina, Yu.K. Kirichenko, N.V. Shuvalova, N.A. Rudova, V.A. Kapitonov, A.Yu. Leshko, I.V. Shushkanov, V.V. Zolotarev, V.A. Kryuchkov, N.A. Pikhtin, T.A. Bagaev, I.V. Yarotskaya, V.N. Svetogorov, Yu.L. Ryaboshtan, M.A. Ladugin, A.A. Marmalyuk, V.A. Simakov. Techn. Phys. Lett., 49 (3), 231 (2023). DOI: 10.1134/S106378502390087X
- L.A. Coldren, S.W. Corzine, M.L. Mashanovitch. Diode lasers and photonic integrated circuits (Hoboken--N.J., John Wiley \& Sons, 2012)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.