High-frequency properties of a two-dimensional quantum superlattice in a strong homogeneous electric field
Orlov L. K.1,2, Zedomi T. E.1, Ivina A. S.1,3, Orlov M. L.3
1Alekseev State Technical University, Nizhny Novgorod, Russia
2Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
3Russian Presidential Academy of National Economy and Public Administration, Nizhny Novgorod, Russia
Email: orlov@ipm.sci-nnov.ru
The high-frequency conductivity of a two-dimensional quantum superlattice with a rectangular cell and a non-associative electron dispersion law has been studied in the presence of a strong quantizing electric field. The impact of superlattice parameters on the nature of the instability regions of an alternating signal with longitudinal and transverse polarization relative to the applied electric field is considered. It is shown that, in general, the characteristics of the amplified signal are significantly influenced not only by the magnitude and direction of the electric field applied to the superlattice, but also by the parameters of the energy spectrum of electrons in the superlattice. In a constant field directed at an angle to the axes of the superlattice, regions may appear where the instability of an alternating signal with arbitrary polarization is realized only at high frequencies. Keywords: two-dimensional quantum superlattice, non-associative law of dispersion, anisotropy, constant and alternating electric fields, low-frequency and high-frequency characteristics.
- A. Wacker. Phys. Reports, 357, 1 (2002)
- Yu.A. Romanov, Yu.Yu. Romanov. FTT, 46, 162 (2004). (in Russian)
- A.A. Andronov, I.M. Nefedov, A.V. Sosnin. FTP, 37, 378 (2003). (in Russian)
- D.G. Paveliev, N.V. Demarina, Yu.I. Koshurinov, A.P. Vasiliev, E.S. Semenova, A.E. Zhukov, V.M. Ustinov. FTP, 38, 1141 (2004). (in Russian)
- A.A. Andronov, E.P. Dodin, D.I. Zinchenko, Y.N. Nozdrin, M.A. Ladugin, A.A. Marmalyuk, A.A. Padalitsa, V.A. Belyakov, I.V. Ladenkov, A.G. Fefelov. Pis'ma ZhETF 102, 235 (2015). (in Russian)
- H. Eisele, L. Li, E.H. Linfield. Appl. Phys. Lett., 112, 172103 (2018)
- D.G. Pavelyev, A.P. Vasilev, V.A. Kozlov, E.S. Obolenskaya, S.V. Obolensky, V.M. Ustinov. IEEE Trans. TGz Sci. Technol., 8, 231 (2018)
- M.F. Pereira, A. Apostolakis. Nanomaterials, 11, 1287 (2021)
- M.L. Orlov, L.K. Orlov. FTP, 55, 241 (2021). (in Russian)
- Yu.A. Romanov, E.V. Demidov. FTP, 31, 308 (1997). (in Russian)
- I.A. Dmitriev, R.A. Suris. FTP, 36, 1449 (2002). (in Russian)
- D.V. Zavyalov, V.I. Konchenkov, S.V. Kryuchkov. FTP, 53, 1527 (2019). (in Russian)
- J. Lee, R. Lee, S. Kim, K. Lee, H.-M. Kim, S. Kim, M. Kim, S. Kim, J.-Ho Lee, B.-G. Park. Solid State Electron., 164, 107701 (2020)
- X. Huang, Ch. Liu, P. Zhou. 2D Mater. Applications, 51, 1 (2022)
- S.A. Rudin, Zh.V. Smagina, V.A. Zinovyev, P.L. Novikov, A.V. Nenashev, E.E. Rodyakina, A.V. Dvurechenskii. FTP, 52, 1346 (2018). (in Russian)
- Zh.V. Smagina, V.A. Zinovyev, G.K. Krivyakin, E.E. Rodyakina, P.A. Kuchinskaya, B.I. Fomin, A.N. Yablonskiy, M.V. Stepikhova, A.V. Novikov, A.V. Dvurechenskii. FTP, 52, 1028 (2018). (in Russian)
- L.K. Orlov, V.I. Vdovin, N.L. Ivina, E.A. Steinman, Yu.N. Drozdov, M.L. Orlov. Crystals, 10, 491 (2020)
- J. Greil, E. Bertagnolli, B. Salem, T. Baron, P. Gentile, A. Lugstein. Appl. Phys. Lett., 111, 33103 (2017)
- M.L. Orlov, Yu.A. Romanov, L.K. Orlov. Microelectronics J., 36, 396 (2005)
- M.L. Orlov, Yu.A. Romanov, L.K. Orlov. Proceed. SEMINANO2005, Budapest, Hungary, 2, 325 (2005)
- L.K. Orlov, Yu.A. Romanov. Izv. vuzov. Radiofizika, 32, 282 (1989). (in Russian)
- Yu.Yu. Romanova, M.L. Orlov, Yu.A. Romanov. FTP, 46, 1475 (2012). (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.