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associative electron dispersion law has been studied in the presence of a strong quantizing electric field. The
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and transverse polarization relative to the applied electric field is considered. It is shown that, in general, the
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1. Introduction

The use of various materials in the manufacture of

low-dimensional quantum heterocompositions of various

dimensions makes it relevant to study the influence of the

structure of energy zones on their characteristics. The con-

version and generation of high-frequency electromagnetic

radiation [1–8] are among the most discussed phenomena

studied in periodic semiconductor structures. In many

cases, however, the reasons for the nonlinear response to the

external fields of real systems used in the experiment can be

very diverse, including those unrelated to the mechanisms

most often used in the literature today to explain the

characteristics observed in the experiment. Therefore, the

task of diagnosing the band characteristics of electrons

in the systems actually studied has not lost its relevance

along with a purely practical interest in the effect of Bloch

oscillations studied in periodic heterocompositions with

narrow zones. This is especially important in conditions of

exposure to the structure of strong quantizing fields, which

have a noticeable effect on the energy spectrum of charge

carriers in it.

The features of the anisotropy of the high-frequency

characteristics of a lateral two-dimensional quantum su-

perlattice (2D QSL) with a rectangular supercell in the

presence of a strong external constant electric field [9] are

analyzed in this paper. The interest in two-dimensional

quantum heterocompositions [10–12] is associated with

progress in the development of heterotransistors with tun-

neling electron emission into the nanoscale channel region

of the structure [13] and successes in the creation of densely

packed ordered arrays of nanocrystalline islands on the

surface of heteroepitaxial structures associated with the

effect of spatial tunneling [14–16].

Moreover, we studied the impact of the parameters of a

lattice cell of a two-dimensional quantum superlattice and

the nature of the electron dispersion law formed in the

system on the anisotropic, field and frequency characteristics

of the nonlinear high-frequency response of the system in

the presence of a strong constant electric field within the

framework of a single-band model.

2. High-frequency conductivity of a
two-dimensional quantum superlattice
in the presence of constant and
alternating electric fields
(general relations)

Further, we study the features of the high-frequency

characteristics of the lateral quantum 2D QSL in the

presence of homogeneous direct and alternating electric
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fields in the plane of the structure, with the law of electron

dispersion in a two-dimensional mini-zone more general

than the simple harmonic law of dispersion corresponding

to the strong coupling approximation and most often used

in analysis:

ε(k) = ε(k3) + ε(k⊥) = ε(k3)

+ 11{1− [111 cos(k1d1) + 112 cos(k2d2)]/(111 + 112)}

+ 12{1− δ0 cos(k1d1) cos(k2d2)}, (1)

where ε(k) and k — the energy and wave vector of

the electron, k i — its components, 11(2), 111, 112,

δ0 = ±1 — parameters of the energy zone of a two-

dimensional quantum superlattice. Next, we also consider

the situation when d1 6= d2, 111 6= 112 along with the

symmetric square lattice (d1 = d2), which reflects the

specifics of a two-dimensional quantum superlattice with

a rectangular cell. The presence of a dissociative (∼ 12)

term in (1) results in the formation of additional lateral

extremes in the two-dimensional Brillouin zone, the position

of which is sensitive both to the choice of direction and

to the choice of parameter values, in particular to the

change of the sign of the parameter δ0 in the disper-

sion law (1). ε(k3) = ε0 = const or ε(k3) = ~
2k2

3/2m∗
3 is

chosen as the dependence ε(k3). The second situation is

typical, for example, for textured polycrystalline matrices

with nanoscale grains [17] or for an ordered system of

filamentous nanocrystals [18] growing in columns in the

vertical direction of the growth plane.

We calculate the high-frequency (HF) characteristics of

a two-dimensional quantum superlattice for identifying the

features related to the specifics of the law of electron

dispersion in k-space using the Boltzmann equation with the

collision integral in the approximation of constant relaxation

time:

∂ f /∂t + (e/~)E1(t)∂ f /∂k1 + (e/~)E2(t)∂ f /∂k2

= −( f − f 0)/τ , (2)

where f (k, t) and f 0(k) — nonequilibrium, perturbed by

the field, and equilibrium electron distribution functions.

The expression for the current density in this case has the

following form

j = (e/4π3
~)

∫

�

f (k)(∂ε/∂k)∂k. (3)

The chosen approximation makes it possible to identify

the main features of the high-frequency response of the

system associated with a specific type of electron dispersion

law used in the lower mini-zone, and at the same time take

into account the effect of state entanglement in the collision

integral for different directions of a two-dimensional quan-

tum superlattice. We decompose the distribution function

into a Fourier series by allocating a time factor 8νµ(t) using
the periodicity condition:

f (k1, k2, t) =

∞
∑

ν,µ=−∞

Fνµ8νµ(t) exp{i(νk1d1 + µk2d2)}.

(4)

In the case of the Boltzmann distribution with the law of

electron dispersion (1) the expression for Fνµ in the integral

representation is written as

Fνµ = F0Re

2π
∫

0

∂x1

2π
∫

0

∂x2 exp(iνx1 + iµx2)

× exp{Y11 cos(x1) + Y12 cos(x2) + Y2 cos(x1) cos(x2)},
(5)

where

x1,2 = k1(2)d1(2), D10 = 11/{(111 + 112)}, D11 = D10111,

D12 = D10112, D20 = δ012, Yi j = Di j/kBT,

F0 = {(2πm3kBT )1/2/16π3
~} exp{(µF − 11 − 12)/kBT}.

Here it was assumed that the directions of the vectors k1
and k2 coincide with the directions of the main axes of the

rectangular lattice k1 ‖ r[100], k2 ‖ r[010]. F01 = F10 follows

from (5) at D11 = D12. In some cases, the evaluation of the

values of matrix elements for specific 2D QSL parameters

is carried out further.

The function 8νµ(t) which is a part of the current

density expression, determined by solving the Boltzmann

equation for the sum of arbitrary values of constant E0

and alternating E1 electric fields E = E0 + E1 cosωt with

components E0i and E1i (i = 1, 2) at the initial time of

switching on the field t0 = −∞, has the following form (see

also Ref. [9,19]):

8νµ(t) = τ −1

{

J0(Bνµ) + 2

∞
∑

n=1

J2n(Bνµ) cos 2nωt

− 2i
∞
∑

n=1

J2n−1(Bνµ) sin(2n − 1)ωt

}

×

{

A−1
νµ J0(Bνµ) + 2

∞
∑

k=1

J2k(Bνµ)

× (Aνµ cos 2kωt + 2kω sin 2kωt)(A2
νµ + 4k2ω2)−1

− 2i
∞
∑

k=1

J2k−1(Bνµ)[(2k − 1)ω cos(2k − 1)ωt

− Aνµ sin(2k − 1)ωt][A2
νµ + (2k − 1)2ω2]−1

}

, (6)
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where

Aνµ = τ −1 + i(e/~)(νE01d1 + µE02d2),

Bνµ = (e/~ω)(νE11d1 + µE12d2),

E01 = E0 cosψ0, E11 = E1 cosψ1,

E02 = E0 sinψ0, E12 = E1 sinψ1,

ψ0(ψ1) — angles between the directions of the fields E0(E1)
and the axis (100). Additionally, let’s write down expres-

sions for the Stark frequencies of electron oscillations in the

superlattice:

�01 = (ed1/~)E01, �02 = (ed2/~)E02,

�11 = (ed1/~)E11, �12 = (ed2/~)E12.

Matrix elements 8νµ at a frequency of ω of an alternating

signal, respectively, have the following form:

8νµ(ω) = (−2iω/τ )

{

J0(Bνµ)J1(Bνµ)(A
2
νµ + ω2)−1

+
∞
∑

n=1

{

J2n(Bνµ)
{

(2n−1)J2n−1(Bνµ)[A
2
νµ+(2n−1)2ω2]−1

+ (2n + 1)J2n+1(Bνµ)[A
2
νµ + (2n + 1)2ω2]−1

}

+ J2n−1(Bνµ)
{

2nJ2n(Bνµ)[A
2
νµ + 4n2ω2]−1

− 2(n − 1)J2n−2(Bνµ)[A
2
νµ + 4(n − 1)2ω2]−1

}}

}

cosωt

+ (2i/τ )Aνµ

{

J0(Bνµ)J1(Bνµ)[(A
2
νµ + ω2)−1 − A−2

νµ ]

−

∞
∑

n=1

{

J2n(Bνµ)
{

J2n−1(Bνµ)[A
2
νµ + (2n − 1)2ω2]−1

− J2n+1(Bνµ)[A
2
νµ + (2n + 1)2ω2]−1

}

− J2n−1(Bνµ)
{

J2n(Bνµ)(A
2
νµ + 4n2ω2)−1

+ J2n−2(Bνµ)[A
2
νµ + 4(n − 1)2ω2]−1

}}

}

sinωt.

(7)

The expression (7) is converted to the following form in the

approximation of a weak variable signal E1(t)

8νµ(ω) = (−i/τ )Bνµ

{

[ω(A2
νµ + ω2)−1] cosωt

− Aνµ[(A
2
νµ + ω2)−1 − 2A−2

νµ ] sinωt. (8)

In the general case, it is not difficult to obtain analytical

expressions at the frequency of an alternating signal for

the current density components j1, j2 directed along the

main axes of symmetry. The corresponding expressions

for the active ( j ′) and reactive ( j ′′) components of the

current components j1, j2 along the 2D QSL axes have

the following form:

j ′1 = j01ωτ cosωt
{

2(�11/ω)F10D11[1− τ 2(�2
01 − ω2)]

×
{

[1− τ 2(�2
01 − ω2)]2 + 4τ 2�2

01

}−1

+ F11D20

{

[(�11 +�12)/ω]
{

1− τ 2[(�01 +�02)
2 − ω2]

}

×
{

[1− τ 2[(�01 +�02)
2 − ω2]]2 + 4τ 2(�01 +�02)

2
}−1

− [(�11 −�12)/ω]
{

1− τ 2[(�01 −�02)
2 − ω2]

}

×
{

[1−τ 2[(�01−�02)
2−ω2]]2+4τ 2(�01−�02)

2
}−1}}

,

(9)

j ′′1 = 2 j01 sinωt
{

2(�11/ω)F10D11

{

[1 + τ 2(�2
01 + ω2)]

×
{

[1−τ 2(�2
01−ω

2)]2+4τ 2�2
01

}−1

−2(1+τ 2�2
01)

−1
}

+ F11D20

{

[(�11 +�12)/ω]
{

[

1 + τ 2[(�01 +�02)
2 + ω2]

]

×
{

[

1− τ 2[(�01 +�02)
2 − ω2]

]2
+ 4τ 2(�01 +�02)

2
}−1

− 2[1 + τ 2(�01 +�02)
2]−1

}

− [(�11 − ω12)/ω]
{

[1 + τ 2

× [(�01 −�02)
2 + ω2]]

{

[

1− τ 2[(�01 −�02)
2 − ω2]

]2

+ 4τ 2(�01 −�02)
2
}−1

− 2[1 + τ 2(�01 −�02)
2]−1

}}}

,

(10)

j ′2 = j02ωτ cosωt
{

2(�12/ω)F01D12[1− τ 2(�2
02 − ω2)]

×
{

[

1− τ 2(�2
02 − ω2)

]2
+ 4τ 2�2

02

}−1

+ F11D20

{

[(�11 +�12)/ω]
[

1− τ 2[(�01 +�02)
2 − ω2]

]

×
{

[

1− τ 2[(�01 +�02)
2 − ω2]

]2
+ 4τ 2(�01 +�02)

2
}−1

+ [(�11 −�12)/ω]
[

1− τ 2[(�01 −�02)
2 − ω2]

]

×
{

[

1−τ 2[(�01−�02)
2−ω2]

]2
+4τ 2(�01−�02)

2
}−1}}

,

(11)
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j ′′2 = 2 j02 sinωt
{

2(�12/ω)F01D12

{

[1 + τ 2(�2
02 + ω2)]

×
{

[1−τ 2(�2
02−ω

2)]2+4τ 2�2
02

}−1

−2(1+τ 2�2
02)

−1
}

+ F11D20

{

[(�11 +�12)/ω]
{

[

1 + τ 2[(�01 +�02)
2 + ω2]

]

×
{

[

1− τ 2[(�01 +�02)
2 − ω2]

]2
+ 4τ 2(�01 +�02)

2
}−1

− 2[1 + τ 2(�01 +�02)
2]−1

}

+ [(�11 −�12)/ω]
{

[

1 + τ 2

× [(�01 −�02)
2 + ω2]

]

{

[

1− τ 2[(�01 −�02)
2 − ω2]

]2

+ 4τ 2(�01 −�02)
2
}−1

− 2/[1 + τ 2(�01 −�02)
2]−1

}}}

.

(12)
Here

j01 = j0/η, j02 = j0, j0 = eF0/2π~d1, η = d2/d1.

Let’s express the power absorbed at the frequency of

the alternating signal. Pω = (j′E1) = j ′1E11 + j ′2E12 (here

the dash indicates time averaging) through the dimension-

less components of the high-frequency conductivity tensor

σ ′
α β [19,20]:

Pω/P0 = {η−1σ ′
11 cos

2 ψ1 + (1 + η)σ ′
12 cosψ1 sinψ1

+ η2σ ′
22 sin

2 ψ1}, (13)

where P0 = j0Ecr , Ecr = ~/ed1τ :

σ ′
11 = 2F10D11[1− τ 2(�2

01 − ω2)]
{

[1− τ 2(�2
01 − ω2)]2

+ 4τ 2�2
01

}−1

+ F11D20

{{

1− τ 2[(�01 +�02)
2 − ω2]

}

×
{[

1− τ 2[(�01 +�02)
2 − ω2]

]2
+ 4τ 2(�01 +�02)

2
}−1

−
{

1−τ 2[(�01−�02)
2−ω2]

}{[

1−τ 2[(�01−�02)
2−ω2]

]2

+ 4τ 2(�01 −�02)
2
}−1}

,

(14)

σ ′
12 = σ ′

21 = F11D20

{{

1− τ 2[(�01 +�02)
2 − ω2]

}

×
{

[

1− τ 2[(�01 +�02)
2 − ω2]

]2
+ 4τ 2(�01 +�02)

2
}−1

+
{

1−τ 2[(�01−�02)
2−ω2]

}{

[

1−τ 2[(�01−�02)
2−ω2]

]2

+ 4τ 2(�01 −�02)
2
}−1}

,

(15)

σ ′
22 = 2F01D12[1− τ 2(�2

02 − ω2)]
{

[1− τ 2(�2
02 − ω2)]2

+ 4τ 2�2
02

}−1

+ F11D20

{{

1− τ 2[(�01 +�02)
2 − ω2]

}

×
{

[

1− τ 2[(�01 +�02)
2 − ω2]

]2
+ 4τ 2(�01 +�02)

2
}−1

−
{

1− τ 2[(�01 −�02)
2 − ω2]

}

×
{

[

1−τ 2[(�01−�02)
2−ω2]

]2
+4τ 2(�01−�02)

2
}−1}

.

(16)

3. High-frequency conductivity
and instability regions
of an alternating signal
in a two-dimensional superlattices
with symmetric
and asymmetric potential

The current-voltage curve analysis performed in Ref. [9]

for a rectangular lattice (η 6= 1; D11 6= D12), in general,

except the directions along the main axes of symmetry

(r[100], r[010]), showed a mismatch of the field directions

(angle ψ0) and the current flowing through the structure

(angle ϕ0). Inclusion in the law of variance (1) the

nonadditive term (D20 6= 0) affects the form of the current-

voltage curve of the superlattice (SL), resulting in a shift

of the maximum current-voltage curve to the region of

higher or lower field values relative to the critical field of

nonlinearity Ecr , and in strong fields to the possibility of

occurrence on the current characteristic, in some cases, an

additional second maximum. At the same time, changing

the sign of the parameter δ0 to (1) did result in the formation

of any additional features on the structure that could be

used to diagnose the inversion of the central valley in the

two-dimensional mini-zone of the superlattice.

Next, we will calculate the characteristics of the high-

frequency conductivity of 2D QSL. The features of genera-

ting signals of different polarization relative to the direction

of the constant electric field applied to the SL, depending

on the parameters 111, 112 in the electron dispersion law,

will be analyzed (1) and the ratios of the periods of the

system along the main axes of the lattice η = d2/d1. First

of all, let’s consider situations when the polarization of the

alternating electric field either coincides with the direction

of the applied constant electric field (ψ1 = ψ0), or the fields

E0 and E1 are mutually perpendicular (ψ1 = ψ0 + π/2). In

the simplest case, when the direction of the applied electric

field coincides with the main axis r[100] of high symmetry,

i.e. at ψ0 = 0, the expression (13) for the power absorbed

Semiconductors, 2024, Vol. 58, No. 2
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at a frequency ω has a simple form:

Pω/P0 = η−1σ ′
11(E1/Ecr)

2 = (2/η)F10D11

× [1− τ 2(�2
01 − ω2)]{[1τ 2(�2

01 − ω2)]2 + 4τ 2�2
01}

−1

(17)
at ψ1 = ψ0 and

Pω/P0 = η2σ ′
22(E1/Ecr)

2 = 2η2F01D12/(1 + τ 2ω2) (18)

at ψ1 = π/2. Thus, a weak alternating signal is amplified

in the frequency range ω2 < �2
01−τ

−2 with longitudinal

polarization of radiation along the direction of the elec-

tric field similar to the situation with one-dimensional

superlattice; the signal attenuates at all frequencies with

transverse polarization. The dependence of the final result

on the presence of a dissociative term in the law of

dispersion is manifested through the ratio of the values

F10D11 and F01D12. The conductivities responsible for the

absorption and amplification of the signal power, namely,

at the frequency ωτ = 2 with E0 = 3Ecr , ψ0 = 0 and

the values of the parameters of the law of dispersion:

11 = 5MeV, 12 = 1MeV, kBT = 7MeV, δ0 = 1, 111 = 1,

112 = 3(30), η = 1 and the corresponding values of the

matrix elements: F10 = 4.60613 (1.54909), F01 = 11.3697

(14.5723), F11 = 2.57457 (1.84242), equal to −0.885795

(−0.038439) for ψ1 = ψ0 and 17.0546 (28.2044) for

ψ1 = ψ0 + π/2. Gain (absorption) of HF signal with

longitudinal (transverse) polarization decreases (increases)
with an increase of potential asymmetry, i.e. with an increase

of the ratio 112/111.

A similar situation is realized if the direction of the

applied electric field coincides with the axis r[010], i. e., at

ψ0 = π/2. The corresponding expression (13) for the power
absorbed at a frequency of ω in this case has the following

form:

Pω/P0 = η2σ ′
22(E1/Ecr )

2 = 2η2F01D12

× [1− τ 2(�2
02 − ω2)]{[1− τ 2(�2

02 − ω2)]2 + 4τ 2�2
02}

−1

(19)
at ψ1 = ψ0 and

Pω/P0 = η−1σ ′
11(E1/Ecr)

2 = (2/η)F10D11/(1 + τ 2ω2)
(20)

at ψ1 = 0. As in the previous case, we have an amplification

of a weak high-frequency signal in the frequency range

ω2 < �2
02−τ

−2 for longitudinal polarization of an alterna-

ting field, the signal attenuation takes place at all frequencies

for transverse polarization. However, the conductivity

of the system at the frequency ωτ = 2 at ψ0 = π/2 is

respectively equal to −6.55947 (−10.8479) for ψ1 = ψ0

and 2.30307 (0.0999413) for ψ1 = 0. We obtain the

values −3.06119 (7.9591) for the longitudinal (transverse)
polarization ψ1 = ψ0(ψ0 + π/2) for the conductivity of the

square superlattice as in the previous case. Thus, the signal

gain with polarization longitudinal along the direction of the

constant electric field depends both on the direction of the

latter and decreases (increases) in the first (second) case.

We obtain F10D11 = F01D12 = 7.9591 in the absence of

potential asymmetry, i.e., at 112 = 111. We obtain averaged

values equal to −3.06119 with longitudinal polarization of

radiation (ψ1 = ψ0) and 7.9591 with transverse polarization

for the conductivity of a structure with a symmetric

superlattice potential for the power gain (absorption) factor

(Pω/P0)/(E1/Ecr)
2, respectively (ψ1 = ψ0 + π/2).

Let’s consider a more complicated case when the di-

rection of the electric field does not coincide with the

direction of any axis of high symmetry (ψ0 6= 0, π/2) of a

square (d1 = d2) two-dimensional superlattice. Accordingly,

solid lines with symbols for several values of superlattice

parameters in Figures 1, 2 represent the boundaries of the

signal instability regions (Pω = 0) on the plane (ωτ , �0τ ).
We will assume that the electric field is directed at an an-

gle 9◦ (ψ0 = π/20), and we will select the following values

for the polarization of the alternating field E1: ψ1 = ψ0

and ψ1 = ψ0 + π/2. We take into account the contribution

of the dissociative term in the electron dispersion law for

calculations (12 6= 0). Additionally, we will assume the type

of potential to be symmetric (111 = 112) or asymmetric

(111 6= 112).

The dependences shown on Figure 1 are characterized by

the presence of areas of negative conductivity, which cause

an increase in the HF signal. The calculation shows that

the amplification of an alternating signal with transverse

constant field polarization in a certain range of values of

a constant electric field can be manifested only at high

frequencies (curves 2 in Figure 1, b, d) despite the fact

that the region of negative differential conductivity (NDC)
in a square 2D QSL with a symmetrical potential for the

characteristic values of the system parameters and the

angles of inclination of the field E0 is always manifested

on the superlattice current-voltage curve in fields greater

than critical (E0 > Ecr) (curves 1 in Figure 1, a, c). That

is, the presence of an incident section of the current-

voltage curve for fields E0 ≫ Ecr in the general case of an

arbitrary direction of the acting fields in the system does not

guarantee the manifestation of negative conductivity of the

alternating signal concurrently at low and high frequencies.

The difference of the values of the field components

along the axes x1,2 is the reason for the change of the type

and nature of the instability regions for an HF signal with

longitudinal and transverse polarization. There is no gain

of the transverse component of the HF current when the

field E0 is directed along the specified axes. The formation

of levels in the electron spectrum in strong fields of the

Stark ladder (and associated Bloch oscillations, which cause

the appearance of an incident section on the current-voltage

curve of the system) results in the instability of the compo-

nent of the alternating signal polarized along the axis x1 at

the first stage at E0 cosψ0 > E(1)
cr ( j01) and only afterwards

along the axis x2 with slightly larger values of the field

E0 sinψ0 > E(2)
cr ( j02). Absorption at low frequencies usually

exceeds the gain efficiency, therefore, the absorption of a
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Figure 1. View of the superlattice current-voltage curve (curves 1) and the instability region of the high-frequency signal for the field

direction ψ0 = π/20 (solid lines connected by symbols — curves 2) for ψ1 = ψ0 (a, c), ψ1 = ψ0 + π/2 (b, d); absorbed signal power Pω

at frequency ωτ = 5 (dashed lines) — curves 3 depending on the magnitude of the applied electric field E0. The following was accepted

for other parameters: d1 = d2; 111 = 112 = 1, 11 = 12 = 5meV, kBT = 7meV, δ0 = 1 (a, b), −1 (c, d).

low-frequency signal is observed in the range of fields E0

satisfying the above conditions. The gain has maximum

values at high frequencies near the instability boundary and

the opposite situation is observed, i. e., the signal gain at high

frequency will dominate the absorption. Thus, the nature of

the instability regions observed in Figure 1, b, d is a sheer

consequence of the combined manifestation of the above-

mentioned mechanisms of amplification and absorption of

the components of the field E1 along the axes x1 and x2 of

the superlattice.

The case of a square 2D QSL with an asymmetric

potential (111 < 112) In Figure 2 is considered in contrast

to the previous situation. From the type of curves

shown in Figure 2, a (curves 1) and corresponding to the

boundaries of the amplified signal, the instability regions

of the alternating signal have a more complex appearance,

even in the case of longitudinal polarization (ψ1 = ψ0) of

high-frequency radiation. Namely, the instability regions

undergo narrowing and a shift towards higher values of

the constant electric field E0 in case of the longitudinal

polarization of the alternating signal. Thus, there can be

no amplification of the alternating signal not only with the

transverse (curves 2 in Figure 2, b, d), but with longitudinal

polarization (curves 2 in Figure 2, a, c) at low frequencies

in fields exceeding the critical field Ecr despite the drop

of current characteristics with an increase of the field E0

(curves 1 in Figure 2).
At the same time, the amplification of the alternating

field E1 is still possible at high frequencies. A similar

situation is observed for a structure with a symmetric

potential only for radiation with transverse polarization

(see Figure 1). It should be noted that the considered

situation is very similar to a one-dimensional superlattice

where the electron transitions between the levels of the

Stark stairs of two adjacent mini-zones play a significant

role [5,21,22]. In this case, the effect of negative dynamic

conductivity also arises due to the competition of two

different mechanisms of generation and absorption of a

high-frequency signal in the system. Thus, there is a range

of fields E0 > Ecr in a two-dimensional superlattice, when

the field E0 deviates from the direction of the axes of

high symmetry, where, the instability at low frequencies

causing the appearance of electric domains, will not occur

despite the presence of an incident section on a stationary
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current-voltage curve system. In this case, the gain region

at high frequencies is realized for variable fields with

both polarizations, and the features are a consequence

of the competition of nonlinearity mechanisms associated

with transitions between states of Stark ladders along the

directions of the main axes of superlattice arising under the

action of field components E01(2).

A comparison of the curves in Figures 1 and 2, having

opposite sign values of the parameters δ0, but the same

values of the other parameters in the law of electron

dispersion, shows that the replacement of the parameter

δ0 = 1(a) by δ0 = −1(c) in the dispersion law, which

causes the inversion of the central valley in the lower mini-

zone of the superlattice, without changing the qualitative

appearance of the curves describing the high-frequency

characteristics of the system, results in their insignificant

quantitative changes. In particular, a shift of the gain

regions to the range of higher electric fields and a slight

narrowing of them mainly from the low frequencies is

observed. The low-frequency superlattice current-voltage

curve (curves 1) is subject to slightly greater changes, where

a shift of the incident section of the current-voltage curve

and the associated amplification region of low-frequency

signals into the range of higher fields is observed. At

the same time, the amplification region at high frequencies

experiences a smaller shift, as can be seen from the

comparison of the curves in Figure 2, a, c, making it possible

to dynamically amplify high-frequency radiation even in

fields corresponding to the increasing portion of the current-

voltage curve.

The impact of the value of the parameter 112 on the

position of the amplification regions of the alternating signal

is more significant. This, in particular, can be seen when

comparing the curves 2 in Figure 2, a and d. With a change

of the potential within the lattice cell of the superlattice,

resulting, in particular, in an increase of the parameter 112

in the electron dispersion law, the amplification regions of

the high-frequency signal E1 shift noticeably more strongly
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towards higher fields. At the same time, the effect of

negative dynamic conductivity on the increasing section

of the current-voltage curve persists. The analysis of

the curves in Figure 2 also allows making a conclusion

that it is possible to expect a rotation of the plane of

polarization of the alternating field towards the direction of

the applied constant field for an alternating signal E1 with

arbitrary polarization relative to the direction of the applied

electric field E0. The effect is attributable to significant

differences in the values of high-frequency conductivity

for the components of the field E1 with longitudinal and

transverse polarization.

4. Comparison of low-frequency
and high-frequency characteristics
of electrons in 2D QSL with different
values of energy spectrum parameters

Let’s consider the nature of instability regions in a

quantum superlattice with a rectangular (d1 6= d2) cell.

The corresponding field dependences of the direct current

components in the directions along j‖ and across j tr of

the direction of the applied electric field E0 at a fixed

angle ψ0 were analyzed in Ref. [9]. The nature of

the incident area on the superlattice current-voltage curve

can noticeably narrow at certain angles of inclination of

the field, due to a change in the contribution to j‖ of

the current components j1 and j2. At the same time,

there may be an increase rather than a decrease of the

current characteristic j‖ in strong fields at certain angles of

inclination of the field with an increase of the value of the

field E0. We will also consider a more general situation in

this section (see Figures 3, 4) corresponding to the deviation

of the shape of the lattice cell of the superlattice from the

square shape (d1 6= d2). The calculation of the absorbed

high-frequency power makes it possible to compare the

low-frequency and high-frequency characteristics of the

system and trace the relationship between the position of

the negative differential conductivity on the current-voltage

curve and the position of the amplification regions of the

high-frequency signal on the plane (ωτ , E0/Ecr) depending

on the ratio of the lattice periods. In particular, it follows

from Figure 3 that even in the case of dominance of the

associative term in the electron dispersion law (11 ≫ 12),
a change in the parameter η, i.e., a deviation of the shape

of the superstructure cell from the square shape, affects

both superlattice current-voltage curve (Figure 3, a), and in

the form of frequency characteristics of an alternating signal

polarized both along (Figure 3, b) a constant electric field

(ψ1 = ψ0) and in the transverse direction (Figure 3, c).
An increase of the role of the dissociative term in

the electron dispersion law, i. e., deviation from a purely

harmonic dependence (going beyond the approximation of a

strong bond), results in noticeable changes in both the type

of the superlattice current-voltage curve (Figure 4, a) and

the behavior of the gain factor of a high-frequency signal.
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Figure 3. Current (a) and frequency (b, c) characteristics of

absorbed microwave power in case of polarization ψ1 of an

alternating field: b — ψ1 = ψ0, c — ψ0 + π/2 and the relation

of constant lattices: curve 1 — d2/d1 = 1/2, 2 —3/1, 3 — 10/1,

4 — 1/1. The values were selected for the other parameters:

E0 = 5Ecr, ψ0 = π/20, 11 = 5meV, 12 = 1meV; 111 = 112 = 1,

δ0 = 1, kBT = 7meV.

In the considered case (the curves in Figures 3, a and 4, a),

the presence of a dissociative term in the electron dispersion

law results only in quantitative changes, practically without

changing the qualitative appearance of the current-voltage

curve superlattice.

With an increase of the parameter 12, both for the

longitudinal and transverse polarization of the alternating

field, an increase of the gain factor and an expansion
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Figure 4. Field (a, b) at ωτ = 5 and frequency (c, d) at E0/Ecr = 5 dependencies a) of current-voltage curve of a two-dimensional

quantum superlattices and b−d) absorbed power Pω with polarization ψ1 of the alternating field: ψ1 = ψ0 (curves 1, 1′) and

ψ1 = ψ0 + π/2 (curves 2, 2′) and parameter values 12 (meV) = a , b) 5 (curves 1, 1′, 2, 2′); c, d) 5 (curves 1, 1′), 10 (curves 2, 2′);
δ0 = 1 (solid curves), −1 (dashed curves). The following values of remaining parameters of the two-dimensional superlattice were used:

d2/d1 = 2.7, ψ0 = π/10, 11 = 5meV, 111 = 112 = 1, kBT = 7meV.

of the amplification regions of high-frequency radiation is

observed, which follows from the type of curves shown

in the frequency dependences of Figure 4, c, d at the fixed

value of the applied constant field, and from the field

dependencies shown in Figure 4, b. At the same time,

as we already indicated in the previous section, additional

HF signal absorption regions may appear in the system

at intermediate frequencies associated with the oscillatory

behavior of the absorbed power in case of a change of

the signal frequency (Figure 4, c, d) or the magnitude of a

constant electric field (Figure 4, b). The structure of the

instability regions changes slightly with a change of the

polarization of the alternating electric field, but strongly

depends on the parameters of the dispersion law, which,

for example, is clearly shown in Figure 5.

Let us consider in more detail the effect of the inversion

of the central valley on the high-frequency properties of

2D QSL due to the change in the sign of the parameter δ0
in the dispersion law. In this case, we will consider 2D QSL

with a cell elongated in the transverse direction (η = 2.7)

and assume the following: 12 = 11 and 111 = 112. The

qualitative form of the low-frequency characteristic of the

superlattice at a fixed field direction (Figure 4, a) practically
does not change with a change of the parameters of

the electron dispersion law. However, the latter have

a rather noticeable effect on the type of high-frequency

characteristics, in particular on the structure of the am-

plification regions of the high-frequency signal. Figure 5

shows the corresponding curves on the plane (ωτ , E0/Ecr).
A comparison of the curves in Figure 5 shows the nature

of the change of the amplification regions of high-frequency

radiation with a change of its polarization, on the one hand,

and with a change of the parameter δ0 in the dispersion

law, on the other hand. We observe the appearance

of an additional gain region in the high frequency range

(Figure 5, a, c) at δ0 > 0, areas where the signal is absorbed

appear in the amplification area at δ0 < 0 (Figure 5, b, d).
The amplification of radiation with transverse polarization

turns out to be more effective at low frequencies according

to the curves in Figure 4, 5, while the opposite situation is
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Figure 5. Boundaries of instability regions (Pω < 0) of a high-frequency signal in the plane (ωτ , E0/Ecr) for ψ1 = ψ0 (a, b);
ψ0 + π/2 (c, d) for the parameter values of a two-dimensional superlattice: d2/d1 = 2.7, ψ0 = π/10, 11 = 12 = 5meV, 111 = 112 = 1,
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observed at high frequencies. Moreover, the amplification of

a high-frequency signal, regardless of its polarization, turns

out to be significantly higher in a system with a dissociative

dispersion law (12 ≫ 11) than in a system with a purely

associative dispersion law.

5. Conclusion

The features of high-frequency conductivity are discussed

for the first time in this paper for a two-dimensional

quantum superlattice in the presence of a strong quantizing

electric field directed at an arbitrary angle relative to the

main axes of the structure. Structures with a supercell of

rectangular shape and a non-associative electron dispersion

law corresponding to exiting the strong bond approximation

are considered. The main attention is paid to the effect of

the deviation of the shape of the superlattice cell from the

ideal square shape, as well as the parameters of the electron

dispersion law on the frequency and field dependences

of the high-frequency response of the system to radiation

with longitudinal and transverse polarization relative to

the applied constant electric field. The impact of these

system parameters on the nature of the formation of areas

of instability of an alternating signal is studied and they

were compared with the corresponding type of superlattice

current-voltage curve. It is shown for the considered system

that there is a range of parameters for which there are value

ranges where the instability of the HF signal will manifest

itself only at high frequencies, while there is no amplification

of the alternating field at low frequencies. In general, the

characteristics of the amplified signal depend not only on

the magnitude and direction of the electric field, frequency

and polarization of the alternating signal, but also on the

nature of the electron energy spectrum formed in a narrow

mini-zone of the superlattice.
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