Finding the wedge-shaped Au nanoclusters at the surface of GaAs and investigating them with the polarization spectroscopy of plasmons
V.L. Berkovits 1, V.A. Kosobukin1, V.P. Ulin 1, P.A. Alekseev 1, F.Yu. Soldatenkov 1, A.V. Nashchekin 1, S.A. Khakhulin 2, O.S. Komkov 2
1Ioffe Institute, St. Petersburg, Russia
2St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: vladimir.berkovits@mail.ioffe.ru

PDF
Using high-temperature annealing of thin gold nanofilms deposited onto the (001) surface of doped p-GaAs crystal with an ultrathin oxide layer, the nanoclusters of gold (Au2Ga alloy) are fabricated. The gold clusters have the wedge shapes with rectangular bases elongated in [110] direction at GaAs(001) surface. This assertion is confirmed by the data of diagnostics of Au/p-GaAs(001) structures. Anisotropic plasmons localized on equally oriented wedge-shaped Au (Au2Ga) clusters are investigated with the optical reflectance anisotropy spectroscopy and spectroscopy of polarized light reflection. It is shown that the spectral peak at the energy about 0.9 eV in the near infrared range is associated with plasmons polarized along the longest sides of clusters in crystallographic direction [110]. Another peak - at the energy of 1.8 eV - is due to plasmons having polarization in direction [110]. Keywords: Au-GaAs interaction, wedge-shaped Au clusters, anisotropic plasmons, polarization spectroscopy.
  1. A.A. Toropov, T.V. Shubina. Plasmonic Effects in Metal-Semiconductor Nanostructures (Oxford University Press, 2015)
  2. V.L. Berkovits, V.A. Kosobukin, V.P. Ulin, P.A. Alekseev, F.Yu. Soldatenkov, V.S. Levitskii. Phys. Status Solidi B, 259, 2100394 (2022). https://doi.org/10.1002/pssb.202100394
  3. V.L. Berkowitz, V.A. Kosobukin, V.P. Ulin, P.A. Alekseev, F.Yu. Soldatenkov, V.A. Levitsky. FTP, 56, 613 (2022). (in Russian). DOI: 10.21883/FTP.2022.07.52746.01
  4. A. Janas, B.R. Jany, K. Szajna, A. Kryshtal, G. Cempura, A. Kruk, F. Krok. Appl. Surf. Sci., 492, 703 (2019). https://doi.org/10.1016/j.apsusc.2019.06.204
  5. D. Yan, E. Look, X. Yin, F.H. Pollak, J.M. Woodall. Appl. Phys. Lett., 65, 186 (1994). https://doi.org/10.1063/1.113035
  6. A.J. Barcz, E. Kaminska, A. Piotrowska. Thin Sol. Films, 149, 251 (1987). https://doi.org/10.1016/0040-6090(87)90301-4
  7. T. Yoshiie, C.L. Bayer, A.G. Milnes. Thin Sol. Films, 111, 149 (1984). https://doi.org/10.1016/0040-6090(84)90483-8
  8. P.B. Johnson, R.W. Christy. Phys. Rev. B, 6, 4370 (1972). DOI: 10.1103/PhysRevB.6.4370
  9. V.A. Kosobukin, A.V. Korotchenkov. FTT 58, 2446 (2016). (in Russian). DOI: 10.21883/ftt.2016.12.43871.164
  10. V.V. Klimov. Nanoplazmonika (M., Fizmatlit, 2010). (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru