Metal assisted chemical etching of silicon and solution synthesis of Cu2O/Si radial nanowire array heterojunctions
Chetibi L.1, Hamana D.1, Achour S.1
1Laboratory of Advanced Materials Technology, Ecole Nationale Polytechnique de Constantine and Phases transformations Laboratory, University of Constantine, Algeria
Email: d_hamana@yahoo.fr

PDF
Cu2O/Si radial nanowire (NWs) array heterojunctions were prepared by depositing Cu2O nanoparticles via chemical bath deposition on n-Si nanowire arrays that were fabricated by metal-assisted electroless etching. After 20 cycles of deposition, large numbers of Cu2O nanoparticles with form shells that wrap the upper segment of each Si nanowire. This method of etching offers exceptional simplicity, flexibility, environmental friendliness, and scalability for the fabrication of three-dimensional silicon nanostructures with considerable depths, because of replacement of harsh oxidants such as H2O2 and AgNO3. Keywords: Cu2O/Si NWs heterojunctions, Cu2O nanoparticles, metal-assisted electroless etching.
  1. S. Barth, F. Hernandez-Ramirez, J.D. Holmes, A. Romano-Rodriguez. Progr. Mater. Sci., 55, 563 (2010)
  2. S. Chattopadhyay, L.C. Chen, K.H. Chen, NPG. Asia. Mater., 3, 74 (2011)
  3. Z.Y. Zhang, R.J. Zou, L. Yu, J.Q. Hu. Crit. Rev. Solid State Mater. Sci., 36, 148 (2011)
  4. K.Q. Peng, S.T. Lee. Adv. Mater., 23, 198 (2011)
  5. B.Z. Tian, X.L. Zheng, T.J. Kempa, Y. Fang, N.F. Yu, G.H. Yu, J.L. Huang, C.M. Lieber. Nature, 449, 885 (2007)
  6. T. Yang, H. Wang, X.M. Ou, C.S. Lee, X.H. Zhang. Adv. Mater., 24, 6199 (2012)
  7. J.S. Li, H.Y. Yu, Y.L. Li. Nanoscale, 3, 4888 (2011)
  8. M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis, H.A. Atwater. Nature Materials, 9, 239 (2010)
  9. K.Q. Peng, Y. Xu, Y. Wu, Y.J. Yan, S.T. Lee, J. Zhu. Small, 1, 1062 (2005)
  10. X. Wang, K.L. Pey, C.H. Yip, E.A. Fitzgerald, D.A. Antoniadis. J. Appl. Phys., 108, 124303 (2010)
  11. D.W. Zenc, K.C. Yung, C.S. Xie. Scr. Mater., 44, 2747 (2001)
  12. J.T. Zhang, J.F. Liu, Q. Peng, X. Wang, Y.D. Li. Chem. Mater., 18, 867 (2006)
  13. H.W. Zhang, X. Zhang, H.Y. Li, Z.K. Qu, S. Fan, M.Y. Ji. Cryst. Growth Des., 7, 820 (2007)
  14. C.L. Lee, K. Tsujino, Y. Kanda, S. Ikeda, M. Matsumura. J. Mater. Chem., 18, 1015 (2008)
  15. Yumei YUE, Department of Mechanical Science and Engineering (Nagoya University, February 2012)
  16. G. Hodes. Phys. Chem. Chem. Phys., 9, 2181 (2007)
  17. U. Gangopadhyay, K.H. Kim, D. Mangalaraj, J.S. Yi. Appl. Surf. Sci., 230, 364 (2004)
  18. T.P. Gujar, V.R. Shinde, C.D. Lokhande, R.S. Mane, S.H. Han. Appl. Surf. Sci., 250, 161 (2005)
  19. J. Wei, J.M. Buriak, G. Siuzdak. Nature, 399, 243 (1999)
  20. V. Lehmann, H. Foll. J. Electrochem. Soc., 137, 653 (1990)
  21. L. Canham. App. Phys. Lett., 57, 1046 (1990)
  22. A.I. Hochbaum, D. Gargas, Y.J. Hwang, P. Yang. Nano Lett., 9, 3550 (2009)
  23. J.N. Chazalviel. Porous Silicon Science and Technology (Springer, Berlin, 1995)
  24. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui. Nature Nanotechnol., 3, 31 (2008)
  25. T. Tsirlina, S. Cohen, H. Cohen, L. Sapir, M. Peisach, R. Tenne, A. Matthaeus, S. Tiefenbacher, W. Jaegermann, E. Ponomarev. Sol. Energy Mater. Solar Cells, 44, 457 (1996)
  26. M.P. Stewart, J.M. Buriak. Adv. Mater., 12, 859 (2000)
  27. Z. Huang, N. Geyer, P. Werner, J. De Boor, U. Gosele. Adv. Mater., 23, 285 (2011)
  28. Z. Xing, Z. Ju, J. Yang, H. Xu, Y. Qian. Nano Res., 5, 477 (2012)
  29. N. Megouda, T. Hadjersi, G.O. Piret, R. Boukherroub, O. Elkechai. Appl. Surf. Sci., 255, 6210 (2009). DOI: 10.1016/j.apsusc.2009.01.075
  30. J. Lim, K. Hippalgaonkar, S.C. Andrews, A. Majumdar, P. Yang. Nano Lett., 12, 2475 (2012)
  31. M.L. Zhang, K.Q. Peng, X. Fan, J.S. Jie, R.Q. Zhang, S.T. Lee, N.B. Wong. J. Phys. Chem. C, 112, 4444 (2008)
  32. K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, S. Lee. Chem a. Europ. J., 12, 7942 (2006)
  33. W.D. Callister, D.G. Rethwisch. Fundamentals of materials science and engineering: an integrated approach (John Wiley \& Sons, 2012)
  34. I. Teerlinck, P. Mertens, H. Schmidt, M. Meuris, M. Heyns. J. Electrochem. Soc., 143, 3323 (1996)
  35. P. Gorostiza, R. Diaz, J. Servat, F. Sanz, J.R. Morante. J. Electrochem. Soc., 144, 909 (1997)
  36. J. Kim, H. Han, Y.H. Kim, S.H. Choi, J.C. Kim, W. Lee. ACS Nano, 5, 3222 (2011)
  37. Z. Li, L. Zhao, H. Diao, C. Zhou, H. Li, W. Wang. Int. J. Electrochem. Sci., 8, 1163 (2013)
  38. B. Conway. Electrochemical supercapacitors: scientific fundamentals and technologicalapplications (POD) (Kluwer Academic/plenum, N. Y., 1999).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru