Determining the mechanisms of current flow in structures of two-layer dielectrics
Bulyarskiy S. V. 1, Belov V. S. 1,2, Gusarov G. G. 1, Lakalin A.V.1, Litvinova K. I. 1, Orlov A. P. 1
1 Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow, Russia
2National Research University of Electronic Technology (MIET), Zelenograd, Russia
Email: bulyar2954@mail.ru, belovvs@list.ru, geog1@mail.ru, a.v.lakalin@mail.ru, litkristy@gmail.com, andreyorlov@mail.ru

PDF
Diodes of type Metal-Dielectric 1-Dielectric 2-Metal are promising for use in devices paired with antennas-rectennas. To create diodes with the characteristics required for operation, it is necessary to understand the mechanisms of current transport in both dielectrics and their contacts with metals. To solve this problem, it is necessary to develop an algorithm for dividing the general current-voltage characteristic into characteristics of individual contacts, the analysis of which will also allow us to investigate the problems of the properties of defects in the dielectrics that make up the diode. In this paper, the solution of the above problems is presented on the example of the Al-Al2O3-Ta2O5-Ni diode. The authors showed how one can divide the current-voltage characteristic into components, calculate potential barriers at the boundaries of metals with contacting dielectrics, and determine the concentration and energy characteristics of structural defects in dielectrics. Keywords: metal-insulator-metal diodes, current-voltage characteristics, Poole-Frenkel effect, currents of thermionic and thermal field emission, currents limited by space charge.
  1. S. Shriwastava, C.C. Tripathi. J. Electron. Mater., 48 (5), 2635 (2019). https://doi.org/10.1007/s11664-018-06887-9
  2. S. Grover, G. Moddel. IEEE J. Photovoltaics, 1 (1), 78 (2011). https://doi.org/10.1109/JPHOTOV.2011.2160489
  3. M. Heiblum. Solid State Electron., 24, 4 (1981). https://doi.org/10.1016/0038-1101(81)90029-0
  4. G. Moddel, S. Grover. Rectenna Solar Cells (Springer, 2013). https://doi.org/10.1007/978-1-4614-3716-1
  5. E. Donchev, J.S. Pang, P.M. Gammon, A. Centeno. MRS Energy Sustainab., 1 (1), 1 (2014). https://doi.org/10.1557/mre.2014.6
  6. E. Shaulov, S. Jameson, E. Socher. 2017 IEEE MTT-S Int. Microw. Symp., 307 (2017). https://doi.org/10.1109/MWSYM.2017.8059105
  7. M. Dragoman, M. Aldrigo. Appl. Phys. Lett., 109 (11), 113105 (2016). https://doi.org/10.1063/1.4962642
  8. A. Costanzo, M. Dionigi, D. Masotti, M. Mongiardo, G. Monti, L. Tarricone, R. Sorrentino. Proc. IEEE, 102 (11), 1692 (2014). https://doi.org/ 10.1109/JPROC.2014.2355261
  9. I. Wilke, Y. Oppliger, W. Herrmann, F. Kneubuhl. Appl. Phys. A: Mater. Sci. Process., 58, 329 (1994). https://doi.org/10.1007/BF00323606
  10. A.A. Khan, G. Jayaswal, F.A. Gahaffar, A. Shamim. Microelectron. Eng., 181, 34 (2017). https://doi.org/10.1016/j.mee.2017.07.003
  11. S. Joshi, G. Moddel. IEEE J. Photovoltaics, 6 (3), 668 (2016). https://doi.org/10.1109/JPHOTOV.2016.2541460
  12. M.N. Gadalla, M. Abdel-Rahman, A. Shamim. Sci. Rep., 4, 4270 (2014). https://doi.org/10.1038/srep04270
  13. E.H. Shah, B. Brown, B.A. Cola. IEEE Trans. Nanotechnology, 16 (2), 230 (2017). https://doi.org/10.1109/TNANO.2017.2656066
  14. G. Pacchioni, S. Valeri. Oxide Ultrathin Films (Wiley-VCH Verlag GmbH \& Co., 2012)
  15. F. Aydinoglu, M. Alhazmi, B. Cui, O.M. Ramahi, M. Irannejad, A. Brzezinski, M. Yavuz. Austin J. Nanomed. Nanotechnol., 1 (1), 3 (2014). https://ece.uwaterloo.ca/ bcui/ 8.814 Publication/2014%20MIM%20diode%20Ferhat%20AJNN.pdf
  16. A. Belkadi, A. Weerakkody, G. Moddel. Nature Commun., 12, 2925 (2021). https://doi.org/10.1038/s41467-021-23182-0
  17. Fu-Chien Chiu. Adv. Mater. Sci. Eng., Article ID 578168 (2014). http://doi.org/10.1155/2014/578168
  18. T.-H. Chiang, J.F. Wager. IEEE Trans. Electron. Dev., 65 (1), 223 (2018). http://doi.org/10.1109/TED.2017.2776612
  19. S. Grover, G. Moddel. Solid State Electron., 67, 94 (2012). https://doi.org/10.1016/j.sse.2011.09.004
  20. S.V. Bulyarskii, O.A. Nevskii, G.E. Zhelyapov. FTP, 15 (7), 1660 (1981) (in Russian)
  21. A. Rose. Phys. Rev., 97, 1538 (1955). https://doi.org/10.1103/PhysRev.97.1538
  22. M.A. Lampert. Phys. Rev., 103, 1648 (1956). https://doi.org/10.1103/PhysRev.103.1648
  23. M.A. Lampert, P. Mark. Current Injection in Solids (N. Y.-London, Academic Press, 1970)
  24. S. Ezhilvalavan, T.Y. Tseng. J. Mater. Sci.: Mater. Electron., 10, 9 (1999). https://doi.org/10.1023/A:1008970922635
  25. G. Aygun, R. Turan. Thin Sol. Films, 517 (2), 994 (2008). https://doi.org/10.1016/j.tsf.2008.07.039

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru