Photodetectors based on GaInAsSb/GaAlAsSb heterostructures for the practical tasks of precision diode laser spectroscopy
Kunitsyna E. V. 1, Andreev I. A.1, Konovalov G. G. 1, Pivovarova A. A.1, Il`inskaya N. D. 1, Yakovlev Yu. P.1, Ponurovskii Ya. Ya. 2, Nadezhdinskii A. I. 2, Kuz'michev A. S. 2, Stavrovskii D. B. 2, Spiridonov M. V. 2
1Ioffe Institute, St. Petersburg, Russia
2Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: kunits@iropt9.ioffe.ru, igor@iropt9.ioffe.ru, glebkonovalov@list.ru, pivovarova.antonina@gmail.com, Natalya.ilynskaya@mail.ioffe.ru, Yakovlev.iropto@mail.ioffe.ru, ponur1960@yandex.ru, nad@nsc.gpi.ru, askuzmichev@gmail.com, stavrovskiy.dmitry@gmail.com, maxim.spiridonov@gmail.com

PDF
The paper considers the uncooled photodetectors based on GaInAsSb/GaAlAsSb heterostructures, which can be applied in precision diode laser spectroscopy. The spectral sensitivity range of photodetectors with a photosensitive area diameter of 1.0 mm and 2.0 mm is 1.0-2.4 μm. The current monochromatic sensitivity at the wavelength of 2.1 μm has a value of 1.0 A/W without bias. The capacity reaches 375 pF with a photosensitive area diameter of 1.0 mm and 800-5000 pF with 2 mm. The modern gas analyzers based on diode lasers and developed photodetectors for medical screening diagnostics by analyzing the gas compositions of exhaled air, for control of impurity gases in the process of rectification of inorganic hydrides, control of methane leaks in gas pipelines, as well as for registration of exhaust gases of a moving car are presented. Keywords: photodetector, heterostructure, diode laser spectroscopy, gas analyzer.
  1. https://www.ntt-electronics.com
  2. Ch. Mann, Q. K. Yang, F. Fuchs, W. Bronner, R. Kiefer, K. Kohler, H. Schneider, R. Kormann, H. Fischer, T. Gensty, W. Elsab er. Quantum Cascade Lasers for the Mid-infrared Spectral Range: Devices and Applications. In: B. Kramer (eds). Advances in Solid State Physics (Springer, Berlin-Heidelberg, 43, 3518 (2003). https://doi.org/10.1007/978-3-540-44838-9_25
  3. L. Hou, S. Tang, B. Hou, S. Liang, J.H.H. Marsh. IEEE J. Select. Topics Quant. Electron., 24 (6), 1102508 (2018)
  4. A.A. Marmalyuk, Yu.L. Ryaboshtan, P.V. Gorlachuk, M.A. Ladugin, A.A. Padalitsa, S.O. Slipchenko, A.V. Lyutetsky, D.A. Veselov, N.A. Pikhtin. Kvant. elektron., 47 (3), 272 (2017) (in Russian)
  5. G. Belenky, L. Shterengas, C.W. Trussell, C.L. Reynolds, jr., M.S. Hybertsen, R. Menna. In: Future Trends in Microelectronics: The Nano Millennium, ed. by S. Luryi, J. Xu, A. Zaslavsky (N. Y., Wiley-Interscience, 2002) p. 231
  6. A.Y. Egorov, D. Bernklau, B. Borchert, S. Illek, D. Livshits, A. Rucki, M. Schuster, A. Kaschner, A. Hoffmann, Gh. Dumitras, M.C. Amann, H. Riechert. J. Cryst. Growth, 227-228, 545 (2001)
  7. S.R. Bank, M.A. Wistey, H.B. Yuen, L.L. Goddard, H.P. Bae, J.S. Harris. J. Vac. Sci. Technol. B, 23 (3), 1337 (2005)
  8. J.W. Ferguson, P. Blood, P.M. Smowton, H. Bae, T. Sarmiento, J.S. Harris, N. Tansu, L.J. Mawst. IEEE J. Quant. Electron., 47 (6), 870 (2011)
  9. E.V. Lutsenko, N.V. Rzheutsky, A.G. Voinilovich, I.E. Svitenkov, A.V. Nagorny, V.A. Shulenkova, G.P. Yablonsky, A.N. Alekseev, S.I. Petrov, Ya.A. Soloviev, A.N. Petlitsky, D.V. Zhigulin, V.A. Solodukha. Kvant. elektron., 49 (6), 540 (2019) (in Russian)
  10. E.G. Camargo, S. Tokuo, H. Goto, N. Kuze. Sensors Mater., 26 (4), 253 (2014)
  11. I.B. Chistokhin, K.S. Zhuravlev. Uspekhi prikl. fiziki, 3 (1), 85 (2015) (in Russian)
  12. O.A. Kozyreva, Y.V. Solov'ev, I.S. Polukhin, A.K. Mikhailov, G.A. Mikhailovskiy, M.A. Odnoblyudov, E.Z. Gareev, E.S. Kolodeznyi, I.I. Novikov, L.Ya. Karachinsky, A.Yu. Egorov, V.E. Bougrov. IOP Conf. Ser.: J. Phys.: Conf. Ser., 917, 052029 (2017)
  13. K. Sun, A. Beling. Appl. Sci., 9 (4), 623 (2019)
  14. M. Razeghi. Eur. Phys. J. Appl. Phys., 23 (3), 149 (2003)
  15. B.W. Jia, K.H. Tan, W.K. Loke, S. Wicaksono, K.H. Lee, S.F. Yoon. ACS Photonics, 5 (4), 1512 (2018)
  16. Camargo, S. Tokuo, H. Goto, N. Kuze. Sensors Mater., 26 (4), 253 (2014)
  17. E.V. Kunitsyna, M.A. Roiz, I.A. Andreev, E.A. Grebenshchikova, A.A. Pivovarova, M. Ahmetoglu (Afrailov), E.V. Lebedok, R.Yu. Mikulich, N.D. Ilyinskaya, Yu.P. Yakovlev. FTP, 54 (7), 677 (2020) (in Russian)
  18. Ya.Ya. Ponurovsky, A.I. Nadezhdensky, D.B. Stavrovsky, Yu.P. Shapovalov, M.V. Spiridonov, A.S. Kuzmichev, A.A. Karabinenko, Yu.M. Petrenko. Sovrem. tekhnologii v meditsine, 12 (5), 71 (2020) (in Russian).
  19. Ya.Ya. Ponurovsky, D.B. Stavrovsky, Yu.P. Shapovalov, M.V. Spiridonov, A.S. Kuzmichev, A.I. Nadezhdensky, A.P. Kotkov, N.D. Grishnova, O.S. Anoshin, A.I. Skosyrev, D.M. Polezhaev. Neorg. mater., 56 (12), 1356 (2020) (in Russian)
  20. A.T. Kulakov, A.I. Nadezhdinsky, D.I. Pleshkov, Yu.P. Shapovalov, Ya.Ya. Ponurovsky. Device and method for measuring the concentration of gaseous substances. RF patent RU2598694C2 (2014)
  21. Ya.Ya. Ponurovsky, A.S. Savransky. Remote optical absorption laser gas analyzer. RF patent RU2714527C1 (2019).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru