Temperature stability features of ohmic contacts resistance to GaAs and GaN based nanoheterostructures
Egorkin V.I.
1, Zemlyakov V.E.
1, Nezhentsev A.V.
1, Zaitsev A.A.
1, Garmash V.I.
11National Research University of Electronic Technology, Zelenograd, Moscow, Russia
Email: alekseyy_nejencev@rambler.ru
The temperature stability of Ge/Au/Ni/Au ohmic contacts to GaAs nanoheterostructures and Ti/Al/Ni/Au ohmic contacts to GaN nanoheterostructures on silicon substrate was investigated. It has been established that optimization of the RTA process made it possible to obtain ohmic contacts with field emission current flow mechanism. The thermal stability of ohmic contacts for transistors and mesa resistors demonstrated the threshold behavior of the heat treatment temperature. The optimum process parameters for temperature stability and minimum contact resistance were defined. Keywords: ohmic contact, gallium arsenide, gallium nitride.
- F. Iucolano, G. Greco, F. Roccaforte. Appl. Phys. Lett., 103 (20), 201604 (2013)
- Z.H. Liu, S. Arulkumaran, G.I. Ng. Appl. Phys. Lett., 94 (14), 142105 (2009)
- T.C. Shen, G.B. Gao, H. Morkoc. J. Vacuum Sci. \& Technol. B: Microelectron. and Nanometer Structures Processing, Measurement, and Phenomena, 10 (5), 2113 (1992)
- P.H. Hao, L.C. Wang, F. Deng, S.S. Lau, J.Y. Cheng. J. Appl. Phys., 79 (8), 4211 (1996)
- A.M. Crook, E. Lind, Z. Griffith, M.J. Rodwell, J.D. Zimmerman, A.C. Gossard, S.R. Bank. Appl. Phys. Lett., 91 (19), 192114 (2007)
- M. Murakami. Sci. Technol. Adv. Mater., 3 (1), 1 (2002)
- A. Callegari, E.T.S. Pan, M. Murakami. Appl. Phys. Lett., 46 (12), 1141 (1985)
- Z. Fan, S.N. Mohammad, W. Kim, O. Aktas, A.E. Botchkarev, H. Morko c. Appl. Phys. Lett., 68, 1672 (1996)
- A.N. Bright, P.J. Thomas, M. Weyland, D.M. Tricker, C.J. Humprhreys, R. Davies, J. Appl. Phys., 89, 3143 (2001)
- A. Motayed, R. Bathe, M.C. Wood, O.S. Diouf, R.D. Vispute, S.N. Mohammad. J. Appl. Phys., 93, 1087 (2003)
- M.W. Fay, G. Modlovan, N.J. Weston, P.D. Brown, I. Harrison, K.P. Hilton, A. Masterton, W. Wallis, R.S. Balmer, M.J. Uren, T. Martin. J. Appl. Phys., 96, 5588 (2004)
- J.S. Kwak, S.E. Mohney, J.Y. Lin, R.S. Kern. Semicond. Sci. Technol., 15, 756 (2000)
- C.L. Wu, J.C. Wang, M.H. Chan, T.T. Chen, S. Gwo. Appl. Phys. Lett., 83 (22), 4530 (2003)
- T.A. Rawdanowicz, J. Narayan. Appl. Phys. Lett., 85 (1), 133 (2004)
- J. Komiyama, Y. Abe, S. Suzuki, H. Nakanishi. Appl. Phys. Lett., 88 (9), 091901 (2006)
- T.V. Blank, Yu.A. Gol'dberg. Semiconductors, 41 (11), 1263 (2007)
- F. Iucolano, F. Roccaforte, A. Alberti, C. Bongiorno, S. Di Franco, V. Raineri. J. Appl. Phys., 100 (12), 123706 (2006)
- N. Thierry-Jebali, O. Menard, C. Dubois, D. Tournier, E. Collard, C. Brylinski, F. Cayrel, D. Alquier. Mater. Sci. Forum (Trans. Tech. Publications Ltd), 711, 208 (2012)
- A.A. Lakhani, R.C. Potter, D.M. Beyea. Semicond. Sci. Technol., 3 (6), 605 (1988)
- G.S. Marlow, M.B. Das, L. Tongson. Solid-State Electron., 26 (4), 259 (1983)
- T.V. Blank, Yu.A. Gol'dberg, O.V. Konstantinov, V.G. Nikitin, E.A. Posse. Tech. Phys., 52 (2), 285 (2007)
- A.V. Nezhentsev, V.E. Zemlyakov, V.I. Egorkin, V.I. Garmash. Elektron. Tekh., Ser. 2: Poluprovodn. Prib., N 2--3, 96 (2015) (in Russian)
- V.I. Egorkin, V.E. Zemlyakov, A.V. Nezhentsev, V.I. Garmash. Russ. Microelectron., 46 (4), 272 (2017)
- V.I. Egorkin, V.E. Zemlyakov, A.V. Nezhentsev, V.I. Garmash. Semiconductors, 52 (15), 1969 (2018)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.