Influence of the asymmetry of the metal mask arrangement on the matching of the lower electrode with a high-frequency displacement generator during reactive-ion etching of massive substrates
Poletayev S. D.1, Lyubimov A. I.2
1Institute of Image Processing Systems, Russian Academy of Sciences, Samara, Russia
2Scientific Production Association State Institute of Applied Optics (SPC SIAO), Kazan, Russia
Email: sergpolet@gmail.com, las126@yandex.ru

PDF
The effect of the degree of asymmetry in the arrangement of metal masks on the matching of the lower electrode with a high-frequency displacement generator during selective reactive-ion etching of massive substrates in plasma-forming gas mixtures based on freon-14 is studied theoretically and experimentally. Theoretically, the absence of the influence of the asymmetry of the mask location on the specific reactive power is shown. It is shown that at the edge of the substrate, especially with a mask, there is a sharp increase in the RF current density, which proves mainly the surface (end) nature of its flow. The influence of the mask location on the behavior of the electric charge density, which correlates with the distribution of the RF current density in the near-surface layer of the substrate, is established. No redistribution of the charge density of the chemically active plasma particles at the edge of the mask was detected. In accordance with the theoretical results obtained, it is experimentally shown that metal masks with a side length ratio of 36/0 mm reduce the power reflection coefficient within 5%. Keywords: diffractive optical element, reactive ion etching, inductively coupled plasma, contact mask, lower electrode, simulation Multiphysics.
  1. D.L. Flamm, V.M. Donelly. VLSI Electron. Microstructure Sci., 8, 190 (1985)
  2. S.B. Odinokov, G.R. Sagatelyan, M.S. Kovalev, K.N. Bugorkov. J. Opt. Technol., 86 (5), 317 (2019). DOI: 10.1364/JOT.86.000317
  3. V.S. Pavelyev, S.A. Borodin, N.L. Kazanskiy, G.F. Kostyuk, A.V. Volkov. Opt. Laser Technol., 39 (6), 1234 (2007). DOI: 10.1016/j.optlastec.2006.08.004
  4. N.L. Kazanskiy, V.A. Kolpakov. Optical materials: Microstructuring surfaces with off-electrode plasma (CRC Press, 2017). DOI: 10.1201/b21918
  5. Methods for Computer Design of Diffractive Optical Elements, ed. by Victor A. Soifer (John Wiley \& Sons, Inc., 2002)
  6. V. Korolkov, D. Belousov. Int. Conf. Information Technol. and Nanotechnol. ( ITNT), (2020) p. 1. DOI: 10.1109/ITNT49337.2020.9253171
  7. N.M. Lebedeva, T.P. Samsonova, N.D. Il'inskaya, S.I. Troshkov, P.A. Ivanov. JTF, 65 (6), 957 (2020). DOI: 10.1134/S1063784220060195]
  8. B. Zhang, X. Zhang. Vacuum, 174, 109215 (2020). https://doi.org/10.1016/j.vacuum.2020.109215
  9. C. Jia, J. Linhong, Z. Yu, S. Yixiang. J. Semicond., 31 (3), 032004 (2010). DOI: 10.1088/1674-4926/31/3/032004
  10. T. Xiao, D. Ni. Chem. Eng. Res. Des., 164, 113 (2020). https://doi.org/10.1016/j.cherd.2020.09.013
  11. A.O. Brezmes, C. Breitkopf. Vacuum, 109, 52 (2014). http://dx.doi.org/10.1016/j.vacuum.2014.06.012
  12. P.A. Nosov, A.F. Shirankov, R.S. Tret'yakov, A.G. Grigor'yants, A.Ya. Stavertii. Izv. Vyssh. Uchebn. Zaved., Priborostr., 59 (12), 1028 (2016) (in Russian). DOI: 10.17586/0021-3454-2016-59-12-1028-1033
  13. N.L. Kazanskiy, G.V. Uspleniev, A.V. Volkov. Proc. SPIE, 4316, 193 (2000). DOI: 10.1117/12.407678
  14. S.D. Poletayev, A.I. Lyubimov. JTF, 66 (4), 639 (2021). DOI: 10.1134/S1063784221040150]
  15. E.T. Lim, J.S. Ryu, C.W. Chung. Thin Sol. Films, 665, 1 (2018). https://doi.org/10.1016/j.tsf.2018.08.046
  16. M.A. Butt, S.N. Khonina N.L. Kazanskiy. Computer Optics, 43 (6), 1079 (2019). DOI: 10.18287/2412-6179-2019-43-6-1079-1083
  17. S.D. Poletayev, A.I. Lyubimov. Tech. Phys. Lett., 47 (8), 569 (2021). DOI: 10.21883/PJTF.2021.11.51008.18717
  18. I.E. Efimov, G.A. Ostan'kovich. Radiochastotnye linii peredachi (M., Svyaz', 1977) (in Russian)
  19. E. Berlin, S. Dvinin, L. Seidman. Vakuumnaya tekhnologiya i oborudovanie dlya naneseniya i travleniya tonkikh plenok (M., Tekhnosfera, 2007) (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru