Effect of morphology on the phonon thermal conductivity of Si, Ge, and Si/Ge core/shell nanowires
Khaliava I. I1, Khamets A. L.1, Safronov I.V.2, Filonov A.B.1, Migas D.B.
1,3
1Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
2Belarusian State University, Minsk, Republic of Belarus
3National Research Nuclear University “MEPhI”, Moscow, Russia
Email: kholyavo.ivan@gmail.com, infuze193@gmail.com, fiz.safronov@mail.ru, filonovab1@mail.ru, migas@bsuir.by
An additional factor in reducing thermal conductivity for thermoelectric applications of semiconductor nanowires is a change in morphology. In this paper, for Si, Ge and core/shell Si/Ge nanowires the effect of the volume fraction and the type of core material on thermal conductivity at 300 K is investigated by means of nonequilibrium molecular dynamics. Nanowires with experimentally observed <100>, <110>, <111> and <112> orientations and different cross sections were taken into account. It was found that for <112>-oriented Si-core/Ge-shell nanowires with a core volume fraction of ~30% the thermal conductivity is the lowest (5.76 W/(m · K)), while the thermal conductivity values for pure Si and Ge nanowires are 13.8 and 8.21 W/(m · K), respectively. Keywords: nanowire, core/shell structure, morphology, silicon, germanium, thermal conductivity, molecular dynamics.
- F. Dominguez-Adame. Phys. E: Low-Dim. Syst. Nanostructures, 113, 213 (2019)
- A.F. Ioffe. Poluprovodnikovye termoelementy (M.; L., Izd. AN SSSR, 1956) p. 103 (in Russian)
- N.I. Goktas, P. Wilson, A. Ghukasyan, D. Wagner. Appl. Phys. Rev., 5 (4), 041305 (2018)
- L. Yang, Z.-G. Chen, M.S. Dargusch, J. Zou. Adv. Energy Mater., 8 (6), 1701797 (2018)
- W.S. Capinski, H.J. Maris, E. Bauser, I. Silier, M. Asen-Palmer, T. Ruf, M. Cardona, E. Gmelin. Appl. Phys. Lett., 71 (15), 2109 (1997)
- C.J. Glassbrenner, G.A. Slack. Phys. Rev., 134, A1058 (1964)
- M. Hu, D. Poulikakos. Nano Lett., 12, 5487 (2012)
- X. Mu, L. Wang, X. Yang, P. Zhang, A.C. To, T. Luo. Sci. Rep., 5, 16697 (2015)
- J. Samaraweera, J.M. Larkin, K.L. Chan, K. Mithraratne. J. Appl. Phys., 123, 244303 (2018)
- X. Chen, Z. Wang, Y. Ma. J. Phys. Chem. C, 115, 20696 (2011)
- M. Shelley, A.A. Mostofi. Europhys. Lett., 94, 67001 (2011)
- H. Karamitaheri, N. Neophytou, M.K. Taher, R. Faez, H. Kosina. J. Electron. Mater., 42 (7), 2091 (2013)
- Y. Zhou, Y. Chen, M. Hu. Sci. Rep., 6, 24903 (2016)
- S. Sarikurt, A. Ozden, A. Kandemir, C. Sevik, A. Kinaci, J.B. Haskins, T. Cagin. J. Appl. Phys., 119, 155101 (2016)
- O. Hayden, R. Agarwal, W. Lu. Nano Today, 3 (5), 12 (2008)
- A. Ozden, A. Kandemir, F. Ay, N.K. Perkgoz, C. Sevik. J. Electron. Mater., 45, 1594 (2016)
- M. Hu, K.P. Giapis, J.V. Goicochea, X. Zhang, D. Poulikakos. Nano Lett., 11 (2), 618 (2011)
- J. Chen, G. Zhang, B. Li. Nano Lett., 12 (6), 2826 (2012)
- Y. Gao, Y. Zhou, M. Hu. J. Mater. Chem. A, 6, 18533 (2018)
- F. Sansoz. Phys. Rev. B, 93, 195431 (2016)
- A. Porter, C. Tran, F. Sansoz. Phys. Rev. B, 93, 195431 (2016)
- T. Markussen. Nano Lett., 12 (9), 4698 (2012)
- J.-N. Shen, L.-M. Wu, Y.-F. Zhang. J. Mater. Chem. A, 2, 2538 (2014)
- P. Heino. Eur. Phys. J. B, 60 (2), 171 (2007)
- Z. Aksamija, I. Knezevic. Phys. Rev. B, 82 (4), 045319 (2010)
- H. Karamitaheri, N. Neophytou, H. Kosina. J. Appl. Phys., 113 (20), 204305 (2013)
- D.B. Migas, V.E. Borisenko. J. Appl. Phys., 105, 104316 (2009)
- D.B. Migas, V.E. Borisenko, Rusli, C. Soci. Nano Converg., 2, 16 (2015)
- S. Plimpton. J. Comp. Phys., 117, 1 (1995)
- J. Tersoff. Phys. Rev. B, 39 (8), 5566 (1989)
- Y. He, I. Savic, D. Donadio, G. Galli. Phys. Chem. Chem. Phys., 14, 16209 (2012)
- Y.S. Ju, K.E. Goodson. Appl. Phys. Lett., 74 (20), 3005 (1999)
- A.L. Khomets, I.I. Kholyavo, I.V. Safronov, A.B. Filonov, D.B. Migas. FTT, 64 (5), 564 (2022) (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.