Thermoelectric properties of p-type Bi0.5Sb1.5Te3 films on flexible substrate
Granatkina Yu. V. 1, Dashevsky Z. M. 2
1Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
2RusTec LLC, Moscow, Russia
Email: granat@imet.ac.ru

PDF
Bi2Te3-based compounds are excellent candidates for the low-temperature thermoelectric application. In the present work, a technology for fabrication of p-Bi0.5Sb1.5Te3 films with high thermoelectric efficiency on a thin flexible polyimide substrate has been developed. The preparation of films was carried out by a flash evaporation method. A systematic study of the transport properties (Hall coefficient, Seebeck coefficient, electrical conductivity, transverse Nernst coefficient) over the entire temperature range of 80-400 K for p-Bi0.5Sb1.5Te3 films has been performed. The power factor (PF) for the Bi0.5Sb1.5Te3 (doped with 0.5 wt% Te) film reached the value of ~ 30 μW/cm · K2, which is among the highest values of the PF reported in the literature to date for a film on a flexible polyimide (amorphous) substrate. The measured thermal diffusivity along the film allowed us to accurately estimate the figure of merit Z for p-Bi0.5Sb1.5Te3 films considering the anisotropic effect of Bi2Te3-based materials. A significant enhancement of Z up to ~ 3.0·10-3 K has been obtained for these films, which is state-of-the-art even compared to bulk materials. This research can provide insight into the fabrication of p-type branch of the film thermoelectric modules (FTEM), which could be a candidate for application in micro-scale thermoelectric generators. Keywords: p-Bi0.5Sb1.5Te3 film, thin flexible substrate, thermoelectric properties.
  1. A.P. Goncalves, C. Godart. In: New Materials for Thermoelectric Applications: Theory and Experiment, ed. by V. Zlatic, A. Hewson (Springer, N. Y., 2013) p. 1
  2. D.M. Rowe. Thermoelectric Handbook: Macro to Nano (CRC Press, Boca Raton, 2005)
  3. K. Tappura, K. Jaakkola. Proceedings, 2, 779 (2018).
  4. Krisina T. Settaluri, Hsinyi Lo, Rajeev J. Ram. J. Electron. Mater., 41, 984 (2012)
  5. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn. Nature, 413, 597 (2001)
  6. P. Fan, Z. Zheng, Z. Cai, T. Chen, R. Lin. Appl. Phys. Lett., 102, 033904 (2013)
  7. Z. Dashevsky, S. Skipidarov. In: Novel Thermoelectric materials and Device Design Concepts, ed. by M. Nikitin, S. Skipidarov (Springer, N. Y., 2019) p. 3
  8. B.M. Gol'cman, V.A. Kudinov, I.A. Smirnov. Poluprovodnikovye termoelektricheskie materialy na osnove Bi2Te3 (M., Nauka, 1972) (in Russian)
  9. J. Herremans, B. Wiendliocha. In: Aspect of Thermoelectricity, ed. by C. Uher (CRS Press, Boca Raton, 2016) p. 39
  10. O. Ben-Yehuda, R. Shuker, Y. Gelbstein, Z. Dashevsky, M.P. Dariel. J. Appl. Phys., 101, 113707 (2007)
  11. L.M. Goncalves, C. Couto, P. Alpuim, A.G. Rolo, F. Volklein, J.H. Correia. Thin Sol. Films, 518, 2816 (2010)
  12. X. Duansides, Y. Jiang. Appl. Surf. Sci., 256, 7365 (2010)
  13. L.W. da Silva, M. Kaviany, C. Uher. J. Appl. Phys., 97, 114903 (2005)
  14. M. Takashiri, T. Shirakawa, K. Miyazaki, H. Tsukamoto. Sensors Actuators A Phys., 138, 329 (2007)
  15. G. Wang, L. Endicott, C. Uher. Sci. Adv. Mater., 3, 73 (2011)
  16. E. Symeou, M. Pervolaraki, C.N. Mihailescu, G.I. Athanasopoulos, C. Papageorgiou, T. Kyratsi, J. Giapintzakis. Appl. Surf. Sci., 336, 138 (2015)
  17. P. Fan, Z.-H. Zheng, Z.-K. Cai, T.-B Chen, P.-J. Liu, X.-M. Cai, D.-P. Zhang, G.-X. Liang, J.-T. Luo. Appl. Phys. Lett., 102, 033904 (2013)
  18. D. Bourgault, C.G. Garampon, N. Caillault, L. Carbone, J.A. Aymami. Thin Sol. Films, 516, 8579 (2008)
  19. H. Obara, S. Higomo, M. Ohta, A. Yamoroto, K. Ueno, T. Iida. Jpn. J. Appl. Phys., 48, 085506 (2009)
  20. H. Zou, D.M. Rowe, S.G.K. Williams. Thin Sol. Films, 408, 270 (2002)
  21. H.-J. Wu, W.-T. Yen. Acta Mater., 157, 33 (2018)
  22. R. Deng, X. Su,, S. Hao, S. Zheng, M. Zhang, H. Xie, W. Liu, Y. Yan, V. Wolverton, C. Uher, M.G. Kanatzidis, X. Tang. Energy Environ. Sci., 6, 1520 (2018)
  23. Z.M. Dashevsky, P.P. Konstantinov, S.Ya. Skipidarov. Semiconductors, 53, 861 (2019)
  24. L.D. Ivanova, L.I. Petrova, Ju.V. Granatkina, V.B. Sokolov, S.Ja. Skipidarov, N.I. Duvankov. Inorg. Mater., 44, 687 (2008).
  25. B.M. Gol'cman. Z.M. Dashevsky. V.M. Kajdanov. Plenochnye termoelementy: fizika i primenenie (M., Nauka, 1985) (in Russian)
  26. B. Dzundza, L. Nykyruy, T. Parashchuk, E. Ivakin, Y. Yavorsky, L. Chernyak, Z. Dashevsky. Physica B, 588, 412178 (2020)
  27. E.V. Ivakin, I.G. Kisialiou, L.I. Nykyruy, Y.S. Yavorskyy. Semiconductors, 52, 1691 (2018)
  28. H. Shang, C. Dun, Y. Deng, T. Li, Z. Gao, L. Xiao, H. Gu, D.J. Singh, Z. Ren, F. Ding. J. Mater. Chem. A, 8, 4552 (2020)
  29. H. Bottner, J. Nunus, A. Gavrikov, G. Kuhner, M. Jagle, C. Kunzel, D. Eberhard, G. Plescher, A. Schubert, K.-H. Schlereth. J. Microelectromech. Syst., 13 (3), 414 (2004)
  30. M. Maksymuk, T. Parashchuk, B. Dzundza, L. Nykyruy, L. Chernyak, Z. Dashevsky. J. Mater. Today Energy, 21, 100753 (2021).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru