Experimental and analytical study of the mechanical stress compensation problem in the InGaAs multiple quantum wells for near-infrared light emitting diodes
Salii R. A.
1,2, Malevskaya A. V.
1, Malevskii D. A.
1, Mintairov S. A.
1, Nadtochiy A. M.
2, Kalyuzhnyy N. A.
11Ioffe Institute, St. Petersburg, Russia
2Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
Email: r.saliy@mail.ioffe.ru
The applicability of various methods for calculating the optimal thickness of compensating layers for InGaAs multiple quantum wells used in the active area of (Al)GaAs near-infrared light emitting diodes grown on vicinal substrates with different angle of misorientation is considered. High accuracy of the considered methods for structures, grown on substrates with small misorientation angle (up to 2o) is experimentally demonstrated. For structures on strongly misoriented substrates (6o+), the applicability of the methods is limited to finding the thickness of compensating layers in the first approximation. Light emitting diodes with high efficiency (62 %), quantum efficiency (57 %) and high optical power at a current of up to 1 A are created. Keywords:quantum well, LED, InGaAs, MOVPE, heterostructures.
- L.J. Mawst, H. Kim, G. Smith, W. Sun, N. Tansu. Progr. Quant. Electron., 75, 100303 (2021). DOI: 10.1016/j.pquantelec.2020.100303
- P.D. Nguyen, M. Kim, Y. Kim, J. Jeon, S. Park, C.S. Kim, Q.L. Nguyen, B.S. Chun, S.J. Lee. Heliyon, 10 (3), e25269 (2024). DOI: 10.1016/j.heliyon.2024.e25269
- W.-C. An, H.-G. Kim, L.-K. Kwac, J.-S. So, H.-J. Lee. J. Nanosci. Nanotechnol., 19, 2224 (2019). DOI: 10.1166/jnn.2019.15974
- S. Tundo, M. Mazzer, L. Lazzarini, L. Nasi, G. Torsello, D. Diso, G. Clarke, C. Rohr, P. Abbott, K. Barnham, R. Ginige. Mater. Sci. Technol., 19 (7), 977 (2003). DOI: 10.1179/026708303225004341
- C.W. Tu, X.B. Mei, C.H. Yan, W.G. Bi. Mater. Sci. Eng. B, 35 (1-3), 166 (1995). DOI: 10.1016/0921-5107(95)01434-9
- N.J. Ekins-Daukes, K. Kawaguchi, J. Zhang. Cryst. Growth Des., 2 (4), 287 (2002). DOI: 10.1021/cg025502y
- C. Kittel. Introduction to Solid State Physics. 7th edn (John Wiley \& Sons, Inc., N.Y., 1996)
- J.F. Nye. Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, N.Y., 1985)
- M. Vasilopoulou, A. Fakharuddin, F. Pelayo Garci a de Arquer, D.G. Georgiadou, H. Kim, Abd. Rashid bin Mohd Yusoff, F. Gao, M.K. Nazeeruddin., H.J. Bolink., E.H. Sargent. Nature Photonics, 15, 656 (2021). DOI: 10.1038/s41566-021-00855-2
- Y. Wang, R. Onitsuka, M. Deura, W. Yu, M. Sugiyama, Y. Nakano. J. Cryst. Growth, 312 (8), 1364 (2010). DOI: 10.1016/j.jcrysgro.2009.11.063
- J.W. Matthews, A.E. Blakeslee. J. Cryst. Growth, 32, 265 (1976). DOI: 10.1016/0022-0248(76)90041-5
- R.A. Salii, A.V. Malevskaya, D.A. Malevskii, S.A. Mintairov, A.M. Nadtochiy, N.A. Kalyuzhnyy. Opt. Spectrosc., 132 (11), 1146 (2024). (in Russian). DOI: 10.61011/OS.2024.11.59501.6568-24
- http://www.matprop.ru
- R.A. Salii, A.V. Malevskaya, D.A. Malevskii, S.A. Mintairov, A.M. Nadtochiy, N.A. Kalyuzhnyy. Kristallografiya 4, 743 (2024). (in Russian). DOI: 10.31857/S0023476124040214
- A.V. Malevskaya, N.D. Ilyinskaya, N.A. Kalyuzhnyy, D.A. Malevskii, Yu.M. Zadiranov, P.V. Pokrovsky, A.A. Blokhin, A.V. Andreeva. FTP, 55 (11), 1086 (2021). (in Russian). DOI: 10.21883/FTP.2021.11.51565.9679
- A.V. Malevskaya, N.A. Kalyuzhnyy, R.A. Salii, F.Yu. Soldatenkov, M.V. Nakhimovich, D.A. Malevskii. Tech. Phys.Lett., 50 (18), 22 (2024). (in Russian). DOI: 10.61011/PJTF.2024.18.58625.19946
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.