Energy-efficient and stable resistive switching in vanadium dioxide nanocrystals
Kapoguzov K. E.1,2, Mutilin S. V.1, Milyushin D. M.1,2, Kalinina V. B.1,2, Voloshin B. V.1, Korolkov I. V.3, Kichay V. N.3, Yakovkina L. V.3, Seleznev V. A.1
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State University, Novosibirsk, Russia
3Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
Email: k.kapoguzov@isp.nsc.ru

PDF
In this work we investigate an electrically-driven semiconductor-metal phase transition in formed polycrystalline films, nanocrystal arrays, and a single nanocrystal of vanadium dioxide. An increase by about an order of magnitude in the current jump during the phase transition was observed in the nanocrystal arrays compared to solid films, which is in agreement with the parallel resistance model. We found that the switching threshold power decreases by 4-5 orders of magnitude when compared a solid film to single nanocrystals and reaches a value of about 40 nW. This effect occurs due to lower heat dissipation in single nanocrystals. Vanadium dioxide nanocrystals have demonstrated high stability when switched at least 1010 times. The results obtained are promising for the formation of energy-efficient, stable and durable switching elements based on vanadium dioxide single nanocrystals. Keywords: vanadium dioxide, semiconductor-metal phase transition, resistive switches, nanostructures, threshold power, switching stability.
  1. Y. Ke, S. Wang, G. Liu, M. Li, T.J. White, Y. Long. Small, 14, 1802025 (2018)
  2. R.W. Keyes. Proc. IEEE, 89, 227 (2001)
  3. M.F. Jager, C. Ott, P.M. Kraus, C.J. Kaplan, W. Pouse, R.E. Marvel, R.F. Haglund, D.M. Neumark, S.R. Leone. Proc. Natl. Acad. Sci. USA, 114, 9558 (2017)
  4. F.J. Morin. Phys. Rev. Lett., 3, 34 (1959)
  5. M. Brahlek, L. Zhang, J. Lapano, H.-T. Zhang, R. Engel-Herbert, N. Shukla, S. Datta, H. Paik, D.G. Schlom. MRS Commun., 7, 27 (2017)
  6. W. Yi, K.K. Tsang, S.K. Lam, X. Bai, J.A. Crowell, E.A. Flores. Nature Commun., 9, 4661 (2018)
  7. Y. Zhou, S. Ramanathan. Proc. IEEE, 103, 1289 (2015)
  8. S.M. Bohaichuk, S. Kumar, M. Islam, M. Munoz Rojo, R.S. Williams, G. Pitner, J. Jeong, M.G. Samant, S.S.P. Parkin. E. Pop. Phys. Rev. Appl., 19, 044028 (2023)
  9. S. Mutilin, K. Kapoguzov, V. Prinz, L. Yakovkina. J. Vac. Sci. Technol. A, 40, 063404 (2022)
  10. B.S. Mun, K. Chen, J. Yoon, C. Dejoie, N. Tamura, M. Kunz, Z. Liu, M.E. Grass, S.-K. Mo, C. Park, Y.Y. Lee, H. Ju. Phys. Rev. B, 84, 113109 (2011)
  11. V.Y. Prinz, S.V. Mutilin, L.V. Yakovkina, A.K. Gutakovskii, A.I. Komonov. Nanoscale, 12, 3443 (2020)
  12. S.V. Mutilin, V.Y. Prinz, V.A. Seleznev, L.V. Yakovkina. Appl. Phys. Lett., 113, 013102 (2018)
  13. C. Geng, S. Dou, J. Zhao, F. Ren, J. Gu, H. Wei, H. Guan, S. Liang, L. Li, Y. Li, Z. Tian. Appl. Surf. Sci., 592, 153267 (2022)
  14. A.V. Ivanov, A.Y. Tatarenko, A.A. Gorodetsky, O.N. Makarevich, M. Navarro-Ci a, A.M. Makarevich, A.R. Kaul, A.A. Eliseev, O.V. Boytsova. ACS Appl. Nano Mater., 4, 10592 (2021)
  15. Y. Zhang, W. Xiong, W. Chen, Y. Zheng. Nanomaterials, 11, 338 (2021)
  16. W. Zeng, N. Chen, W. Xie. CrystEngComm., 22, 851 (2020)
  17. L.V. Yakovkina, S.V. Mutilin, V.Y. Prinz, T.P. Smirnova, V.R. Shayapov, I.V. Korol'kov, E.A. Maksimovsky, N.D. Volchok. J. Mater. Sci., 52, 4061 (2017)
  18. K.E. Kapoguzov, S.V. Mutilin, N.I. Lysenko, V.N. Kichay, L.V. Yakovkina, B.V. Voloshin, V.A. Seleznev. Phys. E Low-Dim. Syst. Nanostructures, 167, 116165 (2025)
  19. S. Gates-Rector, T. Blanton. Powder Diffr., 34, 352 (2019)
  20. U. Celano, T. Hantschel, G. Giammaria, R.C. Chintala, T. Conard, H. Bender, W. Vandervorst. J. Appl. Phys., 117, 214305 (2015)
  21. A.G. Shabalin, J. Valle, N. Hua, M.J. Cherukara, M.V. Holt, I.K. Schuller, O.G. Shpyrko. Small, 16, 2005439 (2020)
  22. J. Duchene. Solid State Chem., 12, 303 (1975)
  23. B.S. Mun, K. Chen, Y. Leem, C. Dejoie, N. Tamura, M. Kunz, Z. Liu, M.E. Grass, C. Park, J. Yoon, Y.Y. Lee, H. Ju. Phys. Status Solidi --- Rapid Res. Lett., 5, 107 (2011)
  24. J. Lin, K. Alam, L. Ocola, Z. Zhang, S. Datta, S. Ramanathan, S. Guha. 2017 IEEE Int. Electron Dev. Meeting (IEDM). 23.4.1 (2017)
  25. Y. Higuchi, T. Kanki, H. Tanaka. Appl. Phys. Express, 10, 033201 (2017)
  26. A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, J.K.S. Poon. Appl. Phys. Lett., 105, 231904 (2014)
  27. K.E. Kapoguzov, S.V. Mutilin, V.S. Tumashev, E.K. Bagochus, V.N. Kichay, L.V. Yakovkina. 2024 IEEE 25th Int. Conf. of Young Professionals in Electron Devices and Materials (EDM), 190 (2024).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru