On sputter damage of silicon heterojunction solar cells and its recovery by illuminated annealing
Abolmasov S. N.1,2, Levitskii V. S.1,2, Titov A. S.1,2, Terukov E. I.1,2
1R and D Center of Thin Film Technologies in Energetics, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
Email: s.abolmasov@hevelsolar.com
Mechanisms of plasma damage caused by sputtering of transparent conductive oxide (TCO) layers in silicon heterojunction (SHJ) solar cells have been investigated. It is shown that a buffer layer at the amorphous/crystalline silicon (a-Si/c-Si) interface can play an essential role in mitigating the sputter damage. More than 9 %abs. loss in the conversion efficiency is observed for rear emitter SHJ cells with nanocrystalline silicon n-layer when the underlying buffer layer changes from amorphous silicon carbide to amorphous silicon. It is revealed that the anomalous efficiency loss is mostly related to breaking Si-H bonds by NUV photons at the a-Si/c-Si interface during the TCO sputtering. Illuminated annealing of these cells at elevated temperature using a distributed light source based on light emitting diodes (LEDs) recovers the anomalous efficiency loss by more than 7 %abs. Other possible mechanisms of sputter damage and mitigation strategies are also discussed. Keywords: magnetron sputtering, transparent conductive oxide, a-Si/c-Si interface, surface passivation, conversion efficiency.
- H. Lin, et al.. Nat. Energy, 8, 789 (2023)
- X. Ru, et al.. Joule, 8 (4), 1092 (2024)
- M. Taguchi, E. Maruyama, M. Tanaka. Jap. J. Appl. Phys., 47, 814 (2008)
- A.V. Sachenko, et al.. J. Appl. Phys., 119, 225702 (2016)
- I. Romijn. "Bifacial solar cells --- a brief review", presented at nPV workshop (Konstanz, Germany, 2017)
- C. Ballif, S. De Wolf, A. Descoeudres, Z.C. Holman. Semiconductors and Semimetals, 90, 73 (2014)
- A.S. Abramov, D.A. Andronikov, S.N. Abolmasov, E.I. Terukov. Silicon Heterojunction Technology: A Key to High Efficiency Solar Cells at Low Cost, in High-Efficiency Low-Cost Photovoltaics: Recent Developments, V. Petrova-Koch, R. Hezel, and A. Goetzberger, Eds. (Cham: Springer International Publishing, 2020) pp. 113-132
- ITRPV, International Technology Roadmap for Photovoltaic, 15th Ed., May 2024
- E. Aydin, et al.. Matter, 4 (11), 3549 (2021)
- B. Demaurex, S. De Wolf, A. Descoeudres, Z.C. Holman, C. Ballif. Appl. Phys. Lett., 101, 171604 (2012)
- B.M. Meiners, S. Holinski, P. Schafer, S. Hohage, D. Borchert. Proc. 31th European PV Solar Energy Conference (14-18 September, Hamburg, Germany, 2015)
- V. Linss, M. Bivour, H. Itawa, K. Ortner. 9th International Conference on Crystalline Silicon Photovoltaics, AIP Conf. Proc., 2174, 040009 (2019)
- A. Illiberi, P. Kudlacek, A.H.M. Smets, M. Creatore, M.C.M. van de Sanden. Appl. Phys. Lett., 98, 242115 (2011)
- A.H.T. Le, V.A. Dao, D.P. Pham, S. Kim, S. Dutta, C.P.T. Nguyen, Y. Lee, Y. Kim, J. Yi. Sol. Energy Mater. Sol. Cell., 192, 36 (2019)
- A. Eberst, et al.. Adv. Phys. Res., 2400036 (2024)
- E. Kobayashi, et al.. Appl. Phys. Lett., 109, 153503 (2016)
- E. Kobayashi, et al.. Sol. Energy Mater. Sol. Cell., 173, 43 (2017)
- M. Wright, M. Kim, P. Dexiang, Z. Wenbin, B. Wright, B. Hallam. AIP Conf. Proc., 2147, 110006 (2019)
- C. Madumelu, B. Wright, A. Soeriyadi, M. Wright, D. Chen, B. Hoex, B. Hallam. Sol. Energy Mater. Sol. Cell., 218, 110752 (2020)
- M. Wright, A. Soeriyadi, B. Wright, D. Andronikov, I. Nyapshaev, S. Abolmasov, A. Abramov, B. Hallam. IEEE J. Photovoltaics, 12, 267 (2022)
- M. Wright, et. al.. A.H. Soeriyadi, M. Kim, B. Wright, B.V. Stefani, D. Andronikov, I. Nyapshaev, S. Abolmasov, A. Abramov, R.S. Bonilla, B. Hallam. Sol. Energy Mater. Sol. Cell., 248, 112039 (2022)
- S.N. Abolmasov. Plasma Sources Sci. Technol., 21, 035006 (2012)
- J.T. Gudmundsson. Plasma Sources Sci. Technol., 29, 113001 (2020)
- K. Ellmer,.J. Phys. D: Appl. Phys., 33, R17 (2000)
- T. Welzel, K. Ellmer. J. Vac. Sci. Technol. A, 30, 061306 (2012)
- Welzel, K. Ellmer. J. Phys. D: Appl. Phys., 46, 315202 (2013)
- W.M. Lau, I. Bello, L.J. Huang, X. Feng, M. Vos, I.V. Mitchell. J. Appl. Phys., 74 (12), 7101 (1993)
- M.C. Moore, N. Kalyanasundaram, J.B. Freund, H.T. Johnson. Nuclear Instruments and Methods in Physics Research B, 225, 241 (2004)
- P. Sigmund. Phys. Rev., 184, 383 (1969)
- R. Behrisch (ed.). Sputtering by Particle Bombardment I, II and III, Top. Appl. Phys., 47, 52, 64 (Springer, Berlin, Heidelberg 1981, 1983, 1991), Russ. Translation: (MIR, Moscow 1984, 1 986, 1998)
- A. Defresne, O. Plantevin, P. Roca i Cabbarocas. AIP Advances, 6, 125107 (2016)
- S. Nunomura, T. Tsutsumi, K. Nakane, A. Sato, I. Sakata, M. Hori. Jap. J. Appl. Phys., 61, 056003 (2022)
- D. Kruger, R. Kurps, P. Formanek, G. Weidner. Solid State Phenomena, 95-96, 77 (2003)
- D. Popovic, M. Mozetiv cx, A. Vesel, G. Primc, R. Zaplotnik. Plasma Processes and Polymers, e2100061 (2021)
- F. Kurdesau, G. Khripunov, A.F. da Cunha, M. Kaelin, A.N. Tiwari. Journal of Non-Crystalline Solids, 352 (9-20), 1466 (2006)
- R.A. Sinton, A. Cuevas, M. Struckings. Proc. 25th Photovoltaic Specialists Conference (Washington DC, USA, 1996) pp. 457-460
- I.A. Starkov, I.A. Nyapshaev, A.S. Starkov, S.N. Abolmasov, A.S. Abramov, V.S. Levitskiy, E.I. Terukov. J. Vac. Sci. Technol. A, 35 (6), 061301 (2017)
- P. Lippens, D. Chiu, C. Szepesi. Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition (Frankfurt, Germany, 2012) pp. 2079-2082
- H. Efstathiadis, Z. Yin, F.W. Smith. Phys. Rev. B, 46, 13119 (1992)
- K. Wittmaack. Phys. Rev. B, 68, 235211 (2003)
- S.K. Chunduri, M. Schmela. "Heterojunction Solar Technology: working hard on cost reductions", TaiyangNews Report, 2023
- T. Chen, F. Kohler, A. Heidt, R. Carius, F. Finger. Proc. 39th Photovoltaic Specialists Conference (Tampa, FL, USA, 2013) pp. 0917-0920
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.