Lavrukhina E.A.
1, Pashin D. S.
1, Nezhdanov А. V.
1, Sidorenko K. V.
1, Volkov P. V.
2, Bobrov A. I.
11Physical and Technical Research Institute, National Research State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
2Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: ekaterina.a.lavrukhina@gmail.com, pashindmi@gmail.com, nezhdanov@phys.unn.ru, sidorenko@nifti.unn.ru, volkov@ipmras.ru, bobrov@phys.unn.ru
The optimization of the cross-sectional geometry and doping concentrations of the p-n junction in an electro-optic phase shifter, based on the depletion of free carriers in a silicon waveguide, has been performed using the gradient descent method. The configuration obtained through numerical simulation achieves a balance between phase shift efficiency and propagation loss. Additionally, a range of geometrical parameters ensuring single-mode operation in highly doped rib waveguides has been identified. The proposed optimization methodology and resulting findings offer valuable insights for the design of integrated photonic devices. Keywords: silicon photonics, electro-optic phase shifters, silicon-on-insulator, free carrier plasma dispersion effect, single-mode rib optical waveguide.
- A. Rahim, A. Hermans, B. Wohlfeil, D. Petousi, B. Kuyken, D. Van Thourhout, R. Baets. Adv. Photon., 3 (2), 024003 (2021). https://doi.org/10.1117/1.AP.3.2.024003
- Y. Arakawa, T. Nakamura, Y. Urino, T. Fujita. IEEE Commun. Mag., 51 (3), 72 (2013). DOI: 10.1109/MCOM.2013.6476868
- G. Sinatkas, T. Christopoulos, O. Tsilipakos, E.E. Kriezis. J. Appl. Phys., 130 (1), 010901 (2021). https://doi.org/10.1063/5.0048712
- C.R. Doerr. Front. Phys., 3, 37 (2015). https://doi.org/10.3389/fphy.2015.00037
- A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, M. Paniccia. Opt. Express, 15 (2), 660 (2007). https://doi.org/10.1364/OE.15.000660
- P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A.V. Krishnamoorthy, M. Asghari. Opt. Express, 17 (25), 22484 (2009). https://doi.org/10.1364/OE.17.022484
- G.V. Treyz, P.G. May, J.M. Halbout. Appl. Phys. Lett., 59 (7), 771 (1991). DOI: 10.1063/1.105338
- Y. Kim, J.H. Han, D. Ahn, S. Kim. Micromachines, 12 (6), 625 (2021). https://doi.org/10.3390/mi12060625
- R.S. Jacobsen, K.N. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev. Nature, 441 (7090), 199 (2006). DOI: 10.1038/nature04706
- R. Soref, B. Bennett. IEEE J. Quant. Electron., 23 (1), 123 (1987). DOI: 10.1109/JQE.1987.1073206
- M. Nedeljkovic, R. Soref, G.Z. Mashanovich. IEEE Photonics J., 3 (6), 1171 (2011). DOI: 10.1109/JPHOT.2011.2171930
- L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U.D. Keil, T. Franck. Opt. Express, 13 (8), 3129 (2005). https://doi.org/10.1364/OPEX.13.003129
- C.K. Tang, G.T. Reed. Electron. Lett., 31 (6), 451 (1995). DOI: 10.1049/EL:19950328
- W.M. Green, M.J. Rooks, L. Sekaric, Y.A. Vlasov. Opt. Express, 15 (25), 17106 (2007). https://doi.org/10.1364/OE.15.017106
- F.Y. Gardes, G.T. Reed, N.G. Emerson, C.E. Png. Opt. Express, 13 (22), 8845 (2005). https://doi.org/10.1364/OPEX.13.008845
- A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia. Nature, 427 (6975), 615 (2004). DOI: 10.1038/nature02310
- Q. Xu, B. Schmidt, S. Pradhan, M. Lipson. Nature, 435 (7040), 325 (2005). DOI: 10.1038/nature03569
- F. Gan, F.X. Kartner. IEEE Photon. Technol. Lett., 17 (5), 1007 (2005). DOI: 10.1109/LPT.2005.846756
- T. Baba, S. Akiyama, M. Imai, T. Usuki. Opt. Express, 23 (26), 32950 (2015). https://doi.org/10.1364/OE.23.032950
- J. Fujikata, S. Takahashi, M. Takahashi, M. Noguchi, T. Nakamura, Y. Arakawa. Jpn. J. Appl. Phys., 55 (4S), 04EC01 (2016). DOI: 10.7567/JJAP.55.04EC01
- K. Debnath, D.J. Thomson, W. Zhang, A.Z. Khokhar, C. Littlejohns, J. Byers, L. Mastronardi, M.K. Husain, K. Ibukuro, F.Y. Gardes, G.T. Reed, S. Saito. Photonics Res., 6 (5), 373 (2018). https://doi.org/10.1364/PRJ.6.000373
- K. Ogawa. Photonics, 11 (6), 535 (2024). https://doi.org/10.3390/photonics11060535
- T.G. Reed, G.Z. Mashanovich, F.Y. Gardes, M. Nedeljkovic, Y. Hu, D.J. Thomson, K. Li, P.R. Wilson, S.-W. Chen, S.S. Hsu. Nanophotonics, 3 (4--5), 229 (2014). https://doi.org/10.1515/nanoph-2013-0016
- D. Patel, V. Veerasubramanian, S. Ghosh, A. Samani, Q. Zhong, D.V. Plant. Opt. Express, 22 (22), 26788 (2014). https://doi.org/10.1364/OE.22.026788
- J. Wang, C. Qiu, H. Li, W. Ling, L. Li, A. Pang, Z. Sheng, A. Wu, X. Wang, S. Zou, F. Gan. J. Lightwave Technol., 31 (24), 4119 (2013). DOI: 10.1109/Jlt.2013.2287671
- N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J.E. Cunningham, A.V. Krishnamoorthy, M. Asghari. Opt. Express, 18 (8), 7994 (2010). https://doi.org/10.1364/OE.18.007994
- C.E. Png, M.J. Sun, S.T. Lim, T.Y. Ang, K. Ogawa. IEEE J. Select. Topics Quant. Electron., 22 (6), 99 (2016). DOI: 10.1109/JSTQE.2016.2564648
- X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, J. Yu. Opt. Express, 21 (4), 4116 (2013). https://doi.org/10.1364/OE.21.004116
- M. Ziebell, D. Marris-Morini, G. Rasigade, J.-M. Fedeli, P. Crozat, E. Cassan, D. Bouville, L. Vivien. Opt. Express, 20 (10), 10591 (2012). https://doi.org/10.1364/OE.20.010591
- X. Tu, T.Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, G.Q. Lo. Opt. Express, 21 (10), 12776 (2013). https://doi.org/10.1364/OE.21.012776
- Y. Kim, T. Jin, Y. Bae. Jpn. J. Appl. Phys., 60 (5), 052002 (2021). DOI: 10.35848/1347-4065/abeedd
- Y. Zheng, W.D. Sacher, Y. Huang, J.C. Mikkelsen, Y. Yang, X. Luo, P. Dumais, D. Goodwill, H. Bahrami, P.G.-Q. Lo, E. Bernier, J.K.S. Poon. Opt. Express, 25 (7), 8425 (2017). https://doi.org/10.1364/OE.25.008425
- D. Marris-Morini, C. Baudot, J.-M. Fedeli, G. Rasigade, N. Vulliet, A. Souhaite, M. Ziebell, P. Rivallin, S. Olivier, P. Crozat, X. Le Roux, D. Bouville, S. Menezo, F. B uf, L. Vivien. Opt. Express, 21 (19), 22471 (2013). https://doi.org/10.1364/OE.21.022471
- X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li. IEEE Photon. Technol. Lett., 24 (19), 1712 (2012). DOI: 10.1109/LPT.2012.2213244
- Z.Y. Li, D.X. Xu, W.R. McKinnon, S. Janz, J.H. Schmid, P. Cheben, J.Z. Yu. Opt. Express, 17 (18), 15947 (2009). https://doi.org/10.1364/OE.17.015947
- D. Perez-Galacho, D. Marris-Morini, R. Stoffer, E. Cassan, C. Baudot, T. Korthorst, F. Boeuf, L. Vivien. Opt. Express, 24 (23), 26332 (2016). https://doi.org/10.1364/OE.24.026332
- J. Witzens. Proc. IEEE, 106 (12), 2158 (2018). DOI: 10.1109/JPROC.2018.2877636
- R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. Eu-Jin Lim, G.Q. Lo, K. Bergman, T. Baehr-Jones, M. Hochberg. J. Lightwave Technol., 32 (12), 2240 (2014). DOI: 10.1109/JLT.2014.2323954
- A.V. Gasnikov. Sovremennye chislennye metody optimizatsii. Metod universalnogo gradientnogo spuska (M., MFTI, 2018). (in Russian). ISBN 978-5-7417-0667-1
- K. Debnath, H. Arimoto, M.K. Husain, A. Prasmusinto, A. Al-Attili, R. Petra, H.M.H. Chong, G.T. Reed, S. Saito. Front. Mater., 3, 10 (2016). https://doi.org/10.3389/fmats.2016.00010
- R.A. Soref, J. Schmidtchen, K. Petermann. IEEE J. Quant. Electron., 27 (8), 1971 (1991). DOI: 10.1109/3.83406
- O. Powell. J. Lightwave Technol., 20 (10), 1851 (2002). DOI: 10.1109/JLT.2002.804036
- H. Huang, K. Liu, B. Qi, V.J. Sorger. J. Lightwave Technol., 34 (16), 3811 (2016). DOI: 10.1109/JLT.2016.2579163
- D. Dai, Z. Sheng. J. Opt. Soc. Am. B, 24, 2853 (2007). https://doi.org/10.1364/JOSAB.24.002853
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.