Optimization of carrier-depletion silicon optical phase shifter
Lavrukhina E.A. 1, Pashin D. S. 1, Nezhdanov А. V. 1, Sidorenko K. V. 1, Volkov P. V. 2, Bobrov A. I. 1
1Physical and Technical Research Institute, National Research State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
2Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: ekaterina.a.lavrukhina@gmail.com, pashindmi@gmail.com, nezhdanov@phys.unn.ru, sidorenko@nifti.unn.ru, volkov@ipmras.ru, bobrov@phys.unn.ru

PDF
The optimization of the cross-sectional geometry and doping concentrations of the p-n junction in an electro-optic phase shifter, based on the depletion of free carriers in a silicon waveguide, has been performed using the gradient descent method. The configuration obtained through numerical simulation achieves a balance between phase shift efficiency and propagation loss. Additionally, a range of geometrical parameters ensuring single-mode operation in highly doped rib waveguides has been identified. The proposed optimization methodology and resulting findings offer valuable insights for the design of integrated photonic devices. Keywords: silicon photonics, electro-optic phase shifters, silicon-on-insulator, free carrier plasma dispersion effect, single-mode rib optical waveguide.
  1. A. Rahim, A. Hermans, B. Wohlfeil, D. Petousi, B. Kuyken, D. Van Thourhout, R. Baets. Adv. Photon., 3 (2), 024003 (2021). https://doi.org/10.1117/1.AP.3.2.024003
  2. Y. Arakawa, T. Nakamura, Y. Urino, T. Fujita. IEEE Commun. Mag., 51 (3), 72 (2013). DOI: 10.1109/MCOM.2013.6476868
  3. G. Sinatkas, T. Christopoulos, O. Tsilipakos, E.E. Kriezis. J. Appl. Phys., 130 (1), 010901 (2021). https://doi.org/10.1063/5.0048712
  4. C.R. Doerr. Front. Phys., 3, 37 (2015). https://doi.org/10.3389/fphy.2015.00037
  5. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, M. Paniccia. Opt. Express, 15 (2), 660 (2007). https://doi.org/10.1364/OE.15.000660
  6. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A.V. Krishnamoorthy, M. Asghari. Opt. Express, 17 (25), 22484 (2009). https://doi.org/10.1364/OE.17.022484
  7. G.V. Treyz, P.G. May, J.M. Halbout. Appl. Phys. Lett., 59 (7), 771 (1991). DOI: 10.1063/1.105338
  8. Y. Kim, J.H. Han, D. Ahn, S. Kim. Micromachines, 12 (6), 625 (2021). https://doi.org/10.3390/mi12060625
  9. R.S. Jacobsen, K.N. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev. Nature, 441 (7090), 199 (2006). DOI: 10.1038/nature04706
  10. R. Soref, B. Bennett. IEEE J. Quant. Electron., 23 (1), 123 (1987). DOI: 10.1109/JQE.1987.1073206
  11. M. Nedeljkovic, R. Soref, G.Z. Mashanovich. IEEE Photonics J., 3 (6), 1171 (2011). DOI: 10.1109/JPHOT.2011.2171930
  12. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U.D. Keil, T. Franck. Opt. Express, 13 (8), 3129 (2005). https://doi.org/10.1364/OPEX.13.003129
  13. C.K. Tang, G.T. Reed. Electron. Lett., 31 (6), 451 (1995). DOI: 10.1049/EL:19950328
  14. W.M. Green, M.J. Rooks, L. Sekaric, Y.A. Vlasov. Opt. Express, 15 (25), 17106 (2007). https://doi.org/10.1364/OE.15.017106
  15. F.Y. Gardes, G.T. Reed, N.G. Emerson, C.E. Png. Opt. Express, 13 (22), 8845 (2005). https://doi.org/10.1364/OPEX.13.008845
  16. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia. Nature, 427 (6975), 615 (2004). DOI: 10.1038/nature02310
  17. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson. Nature, 435 (7040), 325 (2005). DOI: 10.1038/nature03569
  18. F. Gan, F.X. Kartner. IEEE Photon. Technol. Lett., 17 (5), 1007 (2005). DOI: 10.1109/LPT.2005.846756
  19. T. Baba, S. Akiyama, M. Imai, T. Usuki. Opt. Express, 23 (26), 32950 (2015). https://doi.org/10.1364/OE.23.032950
  20. J. Fujikata, S. Takahashi, M. Takahashi, M. Noguchi, T. Nakamura, Y. Arakawa. Jpn. J. Appl. Phys., 55 (4S), 04EC01 (2016). DOI: 10.7567/JJAP.55.04EC01
  21. K. Debnath, D.J. Thomson, W. Zhang, A.Z. Khokhar, C. Littlejohns, J. Byers, L. Mastronardi, M.K. Husain, K. Ibukuro, F.Y. Gardes, G.T. Reed, S. Saito. Photonics Res., 6 (5), 373 (2018). https://doi.org/10.1364/PRJ.6.000373
  22. K. Ogawa. Photonics, 11 (6), 535 (2024). https://doi.org/10.3390/photonics11060535
  23. T.G. Reed, G.Z. Mashanovich, F.Y. Gardes, M. Nedeljkovic, Y. Hu, D.J. Thomson, K. Li, P.R. Wilson, S.-W. Chen, S.S. Hsu. Nanophotonics, 3 (4--5), 229 (2014). https://doi.org/10.1515/nanoph-2013-0016
  24. D. Patel, V. Veerasubramanian, S. Ghosh, A. Samani, Q. Zhong, D.V. Plant. Opt. Express, 22 (22), 26788 (2014). https://doi.org/10.1364/OE.22.026788
  25. J. Wang, C. Qiu, H. Li, W. Ling, L. Li, A. Pang, Z. Sheng, A. Wu, X. Wang, S. Zou, F. Gan. J. Lightwave Technol., 31 (24), 4119 (2013). DOI: 10.1109/Jlt.2013.2287671
  26. N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J.E. Cunningham, A.V. Krishnamoorthy, M. Asghari. Opt. Express, 18 (8), 7994 (2010). https://doi.org/10.1364/OE.18.007994
  27. C.E. Png, M.J. Sun, S.T. Lim, T.Y. Ang, K. Ogawa. IEEE J. Select. Topics Quant. Electron., 22 (6), 99 (2016). DOI: 10.1109/JSTQE.2016.2564648
  28. X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, J. Yu. Opt. Express, 21 (4), 4116 (2013). https://doi.org/10.1364/OE.21.004116
  29. M. Ziebell, D. Marris-Morini, G. Rasigade, J.-M. Fedeli, P. Crozat, E. Cassan, D. Bouville, L. Vivien. Opt. Express, 20 (10), 10591 (2012). https://doi.org/10.1364/OE.20.010591
  30. X. Tu, T.Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, G.Q. Lo. Opt. Express, 21 (10), 12776 (2013). https://doi.org/10.1364/OE.21.012776
  31. Y. Kim, T. Jin, Y. Bae. Jpn. J. Appl. Phys., 60 (5), 052002 (2021). DOI: 10.35848/1347-4065/abeedd
  32. Y. Zheng, W.D. Sacher, Y. Huang, J.C. Mikkelsen, Y. Yang, X. Luo, P. Dumais, D. Goodwill, H. Bahrami, P.G.-Q. Lo, E. Bernier, J.K.S. Poon. Opt. Express, 25 (7), 8425 (2017). https://doi.org/10.1364/OE.25.008425
  33. D. Marris-Morini, C. Baudot, J.-M. Fedeli, G. Rasigade, N. Vulliet, A. Souhaite, M. Ziebell, P. Rivallin, S. Olivier, P. Crozat, X. Le Roux, D. Bouville, S. Menezo, F. B uf, L. Vivien. Opt. Express, 21 (19), 22471 (2013). https://doi.org/10.1364/OE.21.022471
  34. X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li. IEEE Photon. Technol. Lett., 24 (19), 1712 (2012). DOI: 10.1109/LPT.2012.2213244
  35. Z.Y. Li, D.X. Xu, W.R. McKinnon, S. Janz, J.H. Schmid, P. Cheben, J.Z. Yu. Opt. Express, 17 (18), 15947 (2009). https://doi.org/10.1364/OE.17.015947
  36. D. Perez-Galacho, D. Marris-Morini, R. Stoffer, E. Cassan, C. Baudot, T. Korthorst, F. Boeuf, L. Vivien. Opt. Express, 24 (23), 26332 (2016). https://doi.org/10.1364/OE.24.026332
  37. J. Witzens. Proc. IEEE, 106 (12), 2158 (2018). DOI: 10.1109/JPROC.2018.2877636
  38. R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. Eu-Jin Lim, G.Q. Lo, K. Bergman, T. Baehr-Jones, M. Hochberg. J. Lightwave Technol., 32 (12), 2240 (2014). DOI: 10.1109/JLT.2014.2323954
  39. A.V. Gasnikov. Sovremennye chislennye metody optimizatsii. Metod universalnogo gradientnogo spuska (M., MFTI, 2018). (in Russian). ISBN 978-5-7417-0667-1
  40. K. Debnath, H. Arimoto, M.K. Husain, A. Prasmusinto, A. Al-Attili, R. Petra, H.M.H. Chong, G.T. Reed, S. Saito. Front. Mater., 3, 10 (2016). https://doi.org/10.3389/fmats.2016.00010
  41. R.A. Soref, J. Schmidtchen, K. Petermann. IEEE J. Quant. Electron., 27 (8), 1971 (1991). DOI: 10.1109/3.83406
  42. O. Powell. J. Lightwave Technol., 20 (10), 1851 (2002). DOI: 10.1109/JLT.2002.804036
  43. H. Huang, K. Liu, B. Qi, V.J. Sorger. J. Lightwave Technol., 34 (16), 3811 (2016). DOI: 10.1109/JLT.2016.2579163
  44. D. Dai, Z. Sheng. J. Opt. Soc. Am. B, 24, 2853 (2007). https://doi.org/10.1364/JOSAB.24.002853

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru