The investigation of the impact of nano-structured AlN/Si(100) templates for the growth of semipolar AlN(1011) layers
Bessolov V. N.1, Konenkova E. V.1, Rodin S. N.1, Solomnikova A. V.2, Sharofidinov Sh. Sh.1
1Ioffe Institute, St. Petersburg, Russia
2St. Petersburg Electrotechnical University ”LETI“, 197022 St. Petersburg, Russia
Email: lena@triat.ioffe.ru
Semipolar AlN(1011) layers grown by hydride vapour-phase epitaxy (HVPE) on AlN/Si(100) templates were studied by X-ray diffraction, atomic force, and scanning electron microscopy. Two types of structures were prepared as AlN/Si(100) templates on a Si(100) substrate with a symmetrical V-shaped nano-relief with a depth of about ~ 40 nm at a step of 40-60 nm, in which one of the templates had only a layer grown by metal organic chemical vapor phase deposition (MOCVD), and the second also had an additional intermediate layer a layer grown by reactive magnetron sputtering (RMS). It was shown that all structures formed the HVPE layer of AlN in the form of blocks, the sizes of which were larger for the template grown by MOCVD than on the template grown by two methods. It was found that the templates affect the structure of the AlN layer: on a template grown by two methods, with a thickness of 115 microns separated from the substrate, X-ray diffraction showed the presence of (0002) and (1011) blocks with FWHM ωtheta=5 arcgrad, and on the MOCVD template, the structure of AlN(1011) with ωtheta=1.5 arcgrad with cracks in the direction perpendicular to the V-groove at a thickness of 7 microns. Keywords: aluminum nitride, nano-structured silicon substrate, hydride vapour-phase epitaxy.
- R.S. Pengelly, S.M. Wood, J.W. Milligan, S.T. Sheppard, W.L. Pribble. IEEE Trans. Microw. Theory Techn., 60 (6), 1764 (2012). https://doi.org/10.1109/TMTT.2012.2187535
- D. Zhu, D.J. Wallis, C.J. Humphreys. Rep. Progr. Phys., 76 (10), 106501 (2013). https://doi.org/10.1088/0034-4885/76/10/106501
- J.J. Freedsman, A. Watanabe, Y. Yamaoka, T. Kubo, T. Egawa. Phys. Status Solidi A, 213, 424 (2016). https://doi.org/10.1002/pssa.201532601
- L. Huang, Y. Li, W. Wang, X. Li, Y. Zheng, H. Wang, Z. Zhang, G. Li. Appl. Surf. Sci., 435, 163 (2018). https://doi.org/10.1016/j.apsusc.2017.11.002
- Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, Sh. Zhang, M. Ikeda, H. Yang. Light: Sci. Appl., 7 (1), 13 (2018). https://doi.org/10.1038/s41377-018-0008-y
- Z.-Z. Zhang, J. Yang, D.-G. Zhao, F. Liang, P. Chen, Z.-S. Liu. Chin. Phys. B, 32 (2), 028101 (2023). https://doi.org/10.1088/1674-1056/ac6b2b
- A. Bardhan, S. Raghavan. J. Cryst. Growth, 578, 126418 (2022). https://doi.org/10.1016/j.jcrysgro.2021.126418
- V.N. Bessolov, E.V. Konenkova. Zh. Tekh. Fiz., 93 (9), 1235 (2023). (in Russian). https://doi.org/10.21883/JTF.2023.09.56211.31-23
- H.Y. Liu, G.S. Tang, F. Zeng, F. Pan. J. Cryst. Growth, 363, 80 (2013). https://doi.org/10.1016/j.jcrysgro.2012.10.008
- T. Yamada, T. Tanikawa, Y. Honda, M. Yamaguchi, H. Amano. Jpn. J. Appl. Phys., 52 (8S), 08JB16 (2013). https://doi.org/10.7567/JJAP.52.08JB16
- A. Dadgar, F. Horich, R. Borgmann, J. Blasing, G. Schmidt, P. Veit, J. Christen, A. Strittmatter. Phys. Status Solidi A, 2200609 (2022). https://doi.org/10.1002/pssa.202200609
- Y. Zhao, S.-H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura. Appl. Phys. Express, 6, 062102 (2013). https://doi.org/10.7567/APEX.6.062102
- Y. Honda, N. Kameshiro, M. Yamaguchi, N. Sawaki. J. Cryst. Growth, 242, 82 (2002). https://doi.org/10.1016/S0022-0248(02)01353-2
- Ch. Wang, X.-D. Gao, D.-D. Li, J.-J. Chen, J.-F. Chen, X.-M. Dong, X. Wang. Chin. Phys. B, 32, 026802 (2023). https://doi.org/10.1088/1674-1056/ac6865
- V.N. Bessolov, M.E. Kompan, E.V. Konenkova, T.A. Orlova, S.N. Rodin, A.V. Solomnikova. ZhTF, 94 (6), 944 (2024). (in Russian). https://doi.org/10.61011/JTF.2024.06.58135.296-23
- V.N. Bessolov, M.E. Kompan, E.V. Konenkova, V.N. Panteleev, S.N. Rodin, M.P. Shcheglov. Pisma ZhTF, 45 (11), 3 (2019). (in Russian). https://doi.org/10.21883/PJTF.2019.11.47813.17756
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.