Evolution of the native oxide composition on Al0.3Ga0.7As(100) surface under interaction with the aqueous solution of sodium sulfide
Lebedev M. V.
1, Lvova T. V.
1, Dementev P. A.
1, Sedova I.V.
1, Koroleva A. V.
2, Zhizhin E. V.
2, Lebedev S. V.
21Ioffe Institute, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
Email: mleb@triat.ioffe.ru, demenp@mail.ioffe.ru, irina@beam.ioffe.ru, aleksandra.koroleva@spbu.ru, evgeniy.zhizhin@spbu.ru, s.v.lebedev@spbu.ru
Morphology and composition of the oxide layers formed on Al0.3Ga0.7As(100) surfaces under air exposure for several months, as well as their evolution under treatment with concentrated aqueous sodium sulfide solution are investigated by atomic-force microscopy and X-ray photoelectron spectroscopy. It is shown that the native oxide layer formed at the Al0.3Ga0.7As(100) surface is non-uniform. In particular, its upper part contains III-group metal oxides and arsenic oxides, whereas the semiconductor/oxide interface is enriched with elemental arsenic. Treatment with concentrated aqueous sodium sulfide solution causes almost complete removal of oxides. After treatment the elemental arsenic coat of about ~1 nm thick remains, which roughness increases with the time of surface treatment. Keywords: atomic-force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), chemical etching, surface passivation, surface roughness.
- R.W. Lambert, T. Ayling, A.F. Hendry, J.M. Carson, D.A. Barrow, S. McHendry, C.J. Scott, A. McKee, W. Meredith. J. Lightwave Technol., 24, 61 (2006)
- S. Koseki, B. Zhang, K. De Greve, Y. Yamamoto. Appl. Phys. Lett., 94, 051110 (2009)
- I.E. Cortes-Mestizo, L.I. Espinosa-Vega, J.A. Espinoza-Figueroa, A. Cisneros-de-la-Rosa, E. Eugenio-Lopez, V.H. Mendez-Garcia, E. Briones, J. Briones, L. Zamora-Peredo, R. Droopad, C. Yee-Rendon. J. Vac. Sci. Technol., B, 34, 02L110 (2016)
- G. Mariani, P.-S. Wong, A.M. Katzenmeyer, F. Leonard, J. Shapiro, D.L. Huffaker. Nano Lett., 11, 2490 (2011)
- L. Shen, E.Y.B. Pun, J.C. Ho. Mater. Chem. Front., 1, 630 (2017)
- E. Barrigon, M. Heurlin, Z. Bi, B. Monemar, L. Samuelson. Chem. Rev., 119, 9170 (2019)
- G. Boras, X. Yu, H.A. Fonseka, G. Davis, A.V. Velichko, J.A. Gott, H. Zeng, S. Wu, P. Parkinson, X. Xu, D. Mowbray, A.M. Sanchez, H. Liu. J. Phys. Chem. C, 125, 14338 (2021)
- R.R. Reznik, I.V. Ilkiv, K.P. Kotlyar, V.O. Gridchin, D.N. Bondarenko, V.V. Lendyashova, E.V. Ubyivovk, A.S. Dragunova, N.V. Kryzhanovskaya, G.E. Cirlin. Phys. Status Solidi RRL, 16, 2200056 (2022)
- A. Creti, P. Prete, N. Lovergine, M. Lomascolo. ACS Appl. Nano Mater., 5, 18149 (2022)
- K. Minehisa, R. Murakami, H. Hashimoto, K. Nakama, K. Sakaguchi, R. Tsutsumi, T. Tanigawa, M. Yukimune, K. Nagashima, T. Yanagida, S. Sato, S. Hiura, A. Murayama, F. Ishikawa. Nanoscale Adv., 5, 1651 (2023)
- Y. Sun, P. Pianetta, P.-T. Chen, M. Kobayashi, Y. Nishi, N. Goel, M. Garner, W. Tsai. Appl. Phys. Lett., 93, 194103 (2008)
- A. Nainani, Y. Sun, T. Irisawa, Z. Yuan, M. Kobayashi, P. Pianetta, B.R. Bennet, J.B. Boos, K.C. Saraswat. J. Appl. Phys., 109, 114908 (2011)
- F.S. Aguirre-Tostado, M. Milojevic, C.L. Hinkle, E.M. Vogel, R.M. Wallace, S. McDonnel, C.J. Hughes. Appl. Phys. Lett., 92, 171906 (2008)
- M.V. Lebedev, N.A. Kalyuzhnyy, S.A. Mintairov, W. Calwet, B. Kaiser, W. Jaegermann. Mater. Sci. Semicond. Process., 51, 81 (2016)
- V.L. Berkovits, V.M. Lantratov, T.V. L'vova, G.A. Shakiashvili, V.P. Ulin, D. Paget. Appl. Phys. Lett., 63, 970 (1993)
- I.V. Sedova, T.V. L'vova, V.P. Ulin, S.V. Sorokin, A.V. Ankudinov, V.L. Berkovits, S.V. Ivanov, P.S. Kop'ev. Semiconductors, 36, 54 (2002)
- T.V. L'vova, I.V. Sedova, M.S. Dunaevskii, A.N. Karpenko, V.P. Ulin, S.V. Ivanov, V.L. Berkovits. Phys. Solid State, 51, 1114 (2009)
- V.A. Solov'ev, I.V. Sedova, T.V. Lvova, M.V. Lebedev, P.A. Dement'ev, A.A. Sitnikova, A.N. Semenov, S.V. Ivanov. Appl. Surf. Sci., 356, 378 (2015)
- H. Oigawa, J.-F. Fan, Y. Nannichi, H. Sugahara, M. Oshima. Jpn. J. Appl. Phys., 30, L322 (1991)
- M.V. Lebedev, T.V. Lvova, I.V. Sedova, Yu.M. Serov, S.V. Sorokin, A.V. Koroleva, E.V. Zhizhin, S.V. Lebedev. Mater. Sci. Semicond. Process., 181, 108604 (2024)
- C.J. Powell, A. Jablonski. Nucl. Instrum. Meth. Phys. Res. A, 601, 54 (2009)
- C.J. Powell, A. Jablonski. NIST Electron Inelastic-Mean-Free-Path Database --- Version 1.2 [National Institute of Standards and Technology, Gaithersburg, MD (2010)]
- M.V. Lebedev. Semiconductors 54, 699 (2020)
- C.D. Thurmond, G.P. Schwartz, G.W. Kammlott, B. Schwartz. J. Electrochem. Soc., 127, 1366 (1980)
- R. Toyoshima, S. Murakami, S. Eguchi, K. Amemiya, K. Mase, H. Kondoh. Chem. Commun., 56, 14905 (2020)
- M. Scarrozza, G. Pourtois, M. Houssa, M. Caymax, A. Stesmans, M. Meuris, M.M. Heyns. Appl. Phys. Lett., 95, 253504 (2009)
- M.V. Lebedev, E. Mankel, T. Mayer, W. Jaegermann. J. Phys. Chem. C, 114, 21385 (2010)
- P.M.A. Sherwood. Surf. Sci. Spectra, 5, 1 (1998).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.