Optical amplification in InGaAs quantum well-dot waveguide heterostructures in spectral range of 1010-1075 nm
Kharchenko A. A.
1, Nadtochiy A. M.
1,2, Shernyakov Y. M.
3, Gordeev N. Yu.
3, Payusov A. S.
3, Beckman A. A.
3, Kornyshov G. O.
3, Simchuk O. I.
1, Salii Yu. A.
3, Kulagina M. M.
3, Mintairov S. A.
3, Kalyuzhnyy N. A.
3, Maximov M. V.
11Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
2HSE University, St. Petersburg, Russia
3Ioffe Institute, St. Petersburg, Russia
Email: antoshkerrr@gmail.com, gordeev@switch.ioffe.ru, plusov@mail.ioffe.ru, gk@mail.ioffe.ru
The optical amplification of radiation from an external source was studied for the first time in waveguide heterostructures with an active region based on quantum well-dots. The dependence of outgoing radiation power on the pumping current was obtained in the spectral range of 990-1075 nm. Considering the spectral dependence of the transparency current, the optical gain coefficient was calculated depending on the current and wavelength. The optical gain in the structures under study reaches 22 dB at the pumping current of 57 mA at a wavelength of 1040 nm, while in the 1010-1075 nm band, the gain exceeds 10 dB. Keywords: quantum well-dots, semiconductor optical amplifiers, transparency current.
- A.A. Lobintsov, M.V. Shramenko, S.D. Yakubovich. Quantum Electron., 38, 661 (2008)
- K.K. Bizheva, B. Povazay, A.A. Apolonski, A. Unterhuber, B. Hermann, H. Sattmann, P.S.J. Russell, F. Krausz, A.F. Fercher, W. Drexler. Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI: V.V. Tuchin, J.A. Izatt, J.G. Fujimoto (eds). SPIE, 4619, 249 (2002)
- I.P. Shilov, G.L. Danielyan, S.V. Marechek, S.V. Kochmarev, L.Yu. Novichikhin. J. Commun. Technol. Electron., 67 (4), 463 (2022)
- M. Tang, X. Tian, X. Lu, S. Fu, P.P. Shum, Z. Zhang, M. Liu, Y. Cheng, J. Liu. Optics Lett., 34, 2204 (2009)
- N.V. Baidus, V.Y. Aleshkin, A.A. Dubinov, Z.F. Krasilnik, K.E. Kudryavtsev, S.M. Nekorkin, A.V. Novikov, A.V. Rykov, D.G. Reunov, M.V. Shaleev, P.A. Yunin, D.V. Yurasov. Semiconductors, 52, 1547 (2018)
- M.V. Maximov, A.M. Nadtochiy, S.A. Mintairov, N.A. Kalyuzhnyy, N.V. Kryzhanovskaya, E.I. Moiseev, N.Yu. Gordeev, Y.M. Shernyakov, A.S. Payusov, F.I. Zubov, V.N. Nevedomskiy, S.S. Rouvimov, A.E. Zhukov. Appl. Sci., 10 (3), 1038 (2020)
- M.V. Maximov, Yu.M. Shernyakov, G.O. Kornyshov, O.I. Simchuk, N.Yu. Gordeev, A.A. Beckman, A.S. Payusov, S.A. Mintairov, N.A. Kalyuzhnyy, M.M. Kulagina, A.E. Zhukov. Semiconductors, 57 (4), 294 (2023)
- M.V. Maximov, N.Y. Gordeev, Y.M. Shernyakov, G.O. Kornyshov, A.A. Beckman, A.S. Payusov, S.A. Mintairov, N.A. Kalyuzhnyy, M.M. Kulagina, A.E. Zhukov. Photonics (MDPI), 10 (10), 1090 (2023)
- A.A. Kharchenko, A.M. Nadtochiy, S.A. Mintairov, Y.M. Shernyakov, A.A. Serin, N.Y. Gordeev, M.V. Maximov, A.E. Zhukov. Nano-Struct. Nano-Objects, 25, 100628 (2021)
- P.A. Andrekson, N.A. Olsson, T. Tanbun-Ek, R.A. Logan, D. Coblentz, H. Temkin. Electron. Lett., 28 (2), 171 (1992)
- S.H. Chang. Appl. Sci., 10 (4), 1552 (2020)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.