Potential speed of a diamond field-effect transistor on subsurface two-dimensional hole gas
Kukushkin V. A. 1,2, Kukushkin Yu. V.2
1Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
2Lobachevsky State University, Nizhny Novgorod, Russia
Email: vakuk@ipfran.ru, yuriy.kukushkinn@gmail.com

PDF
It is shown that the significant change of hole mobility in a two-dimensional hole gas under H-terminated surface of artificial diamond by the variation of a strong orthogonal electric field detected lately can be used for the creation of a high-speed diamond field-effect transistor. According to calculations made for realistic parameters of such a device the time of more than 50% modulation of source-drain current by gate voltage rapidly decreases with the increase of the hole sheet density in the subsurface conduction channel formed by this gas and for its value 7· 1013 cm-2 achieves 7 ps Keywords: diamond, high-speed field-effect transistor, mobility.
  1. Power Electronics Device Applications of Diamond Semiconductors, ed. by S. Koizumi, H. Umezawa, J. Pernot, M. Suzuki (Duxford, Elsevier, 2018)
  2. Optical Engineering of Diamond, ed. by R.P. Mildren and J.R. Rabeau (Weinheim, Wiley-VCH Verlag \& Co. KGaA, 2013)
  3. S.M. Sze. Physics of Semiconductor Devices (N. Y., John Wiley \& Sons, 1981)
  4. G. Akhgar, O. Klochan, L.H. Willems van Beveren, M.T. Edmonds, F. Maier, B.J. Spen-cer, J.C. McCallum, L. Ley, A.R. Hamilton, C.I. Pakes. Nano Lett., 16, 3768 (2016)
  5. N.W. Ashcroft, N.D. Mermin. Solid State Physics (N. Y., Holt, Rinehart and Winston, 1976)
  6. J. Bousquet, T. Klein, M. Solana, L. Saminadayar, C. Marcenat, E. Bustarret. Phys. Rev. B, 95, 161301 (2017)
  7. R.S. Balmer, I. Friel, S. Hepplestone, J. Isberg, M.J. Uren, M.L. Markham, N.L. Palmer, J. Pilkington, P. Huggett, S. Majdi, R. Lang. J. Appl. Phys., 113, 033702 (2013)
  8. Y. Gurbuz, O. Esame, I. Tekin, W.P. Kang, J.L. Davidson. Solid-State Electron., 49, 1055 (2005)
  9. J.L. Liu, C.M. Li, R.H. Zhu, J.C. Guo, L.X. Chen, J.J. Wei, L.F. Hei, J.J. Wang, Z.H. Feng, H. Guo, F.X. Lv. Appl. Surf. Sci., 284, 798 (2013)
  10. C.M. Li, J.L. Liu, L.X. Chen, J.J. Wei, L.F. Hei, J.J. Wang, Z.H. Feng, H. Guo. Phys. Status Solidi C, 11, 1692 (2014)
  11. S.K. Hong, J.G. Oh, W.S. Hwang, B.J. Cho. Semicond. Sci. Technol., 32, 045009 (2017)
  12. J.-M. Baek, S.-W. Son, J.H. Park, J.-K. Park J.-G. Kwak, J. Yoon, D.-S. Bang, J.-H. Lee, T. Kim, D.-H. Kim. Solid-State Electron., 147, 58 (2018)
  13. I.C. Cherik, S. Mohammadi. Appl. Phys. A, 127, 525 (2021)
  14. M. Asad; S. Majdi; A. Vorobiev, K. Jeppson, J. Isberg, J. Stake. IEEE Electron Dev. Lett., 43, 300 (2022)
  15. N. Thoti, Y. Li. Nanoscale Res. Lett., 17, 53 (2022)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru