The effect of the cavity length on the output optical power of semiconductor laser-thyristors based on AlGaAs/GaAs/InGaAs heterostructures
Gavrina P. S.1, Podoskin A. A. 1, Shushkanov I. V.1, Shashkin I. S. 1, Kriychkov V. A.1, Slipchenko S. O. 1, Pikhtin N. A. 1, Bagaev T. A. 1, Ladugin M. A.2, Marmalyuk A. A.2, Simakov V. A.2
1Ioffe Institute, St. Petersburg, Russia
2Stel’makh Research and Development Institute “Polyus,”, Moscow, Russia
Email: gavrina@mail.ioffe.ru

PDF
The effect of laser-thyristor cavity length on the characteristics of the generated laser pulses has been studied. Results show that for pulse durations of approximately ~ 20-30 ns, achieved with a nominal discharge capacitor of 22 nF, increasing the cavity length from 480 to 980 μm enables a rise in maximum peak power from 16.6 W to 25.4 W. A further extension of the cavity length to 1950 μm causes an insignificant decrease in the maximum peak power to 23.7 W due to lower external differential efficiency of the samples at the initial linear region of the light-current curve. However, this extension provides a reduction of optical pulse duration compared to samples of other lengths over the entire supply voltage range. Keywords: laser-thyristor, semiconductor laser, current switch, pulse laser.
  1. H. Wenzel, A. Klehr, A. Liero, H. Christopher, J. Fricke, A. Maab dorf, A. Zeghuzi, A. Knigge. 2019 IEEE High Power Diode Lasers and Systems Conf. (HPD) (Coventry, UK, 2019) p. 7. DOI: 10.1109/HPD48113.2019.8938682
  2. S.S. Freeborn, J. Hannigan, F. Greig, R.A. Suttie, H.A. MacKenzie. Rev. Sci. Instrum., 69, 3948 (1998). DOI: 10.1063/1.1149204
  3. B. Huang, T.T.W. Wong. J. Biomedical Optics, 29 (S1), S11503 (2023). DOI: 10.1117/1.JBO.29.S1.S11503
  4. B. Svobodova, A. Kloudova, J. Ruzicka, L. Kajtmanova, L. Navratil, R. Sedlacek, T. Suchy, M. Jhanwar-Uniyal, P. Jendelova, M. Jhanwar-Uniyal, P. Jendelova. Sci Rep., 9, 7660 (2019). DOI: 10.1038/s41598-019-44141-2
  5. S.O. Slipchenko, A.A. Podoskin, A.V. Rozhkov, N.A. Pikhtin, I.S. Tarasov, T.A. Bagaev, M.A. Ladugin, A.A. Marmalyuk, A.A. Padalitsa, V.A. Simakov. IEEE Photon. Technol. Lett., 27, 307 (2015). DOI: 10.1109/LPT.2014.2370064
  6. P.S. Gavrina, A.A. Podoskin, D.N. Romanovich, V.S. Golovin, D.A. Veselov, S.O. Slipchenko, N.A. Pikhtin, T.A. Bagaev, M.A. Ladugin, A.A. Marmalyuk, V.A. Simakov. Semicond. Sci. Technol., 34, 065025 (2019). DOI: 10.1088/1361-6641/ab1c0a
  7. N. Ammouri, H. Christopher, J. Fricke, A. Ginolas, A. Liero, A. Maab dorf, H. Wenzel, A. Knigge. Electron. Lett., 59, e12680 (2023). DOI: 10.1049/ell2.12680
  8. A. Knigge, A. Klehr, H. Wenzel, A. Zeghuzi, J. Fricke, A. Maab dorf, A. Liero, G. Trankle. Phys. Status Solidi A, 215, 1700439 (2018). DOI: 10.1002/pssa.201700439
  9. Y. Qiu, Y. Xie, W. Wang, W. Liu, L. Kuang, X. Bai, M. Hu, J. Ho. 2019 IEEE 4th Optoelectronics Global Conf. (OGC) (Shenzhen, China, 2019) p. 32. DOI: 10.1109/OGC.2019.8925087
  10. Y. Zhao, G. Yang, Y. Zhao, S. Tang, Y. Lan, Y. Liu, Z. Wang, A. Demir. IEEE Photonics J., 14, 1557006 (2022). DOI: 10.1109/JPHOT.2022.3211964
  11. J. Fricke, H. Wenzel, A. Maab dorf, C. Zink, M. Matalla, R. Unger, A. Knigge. Semicond. Sci. Technol., 37, 095021 (2022). DOI: 10.1088/1361-6641/ac860f
  12. M.A. Ladugin, Yu.P. Koval, A.A. Marmalyuk, V.A. Petrovsky, T.A. Bagaev, A.Yu. Andreev, A.A. Padalitsa, V.A. Simakov. Quant. Electron., 43, 407 (2013). DOI: 10.1070/QE2013v043n05ABEH015156
  13. A.A. Marmalyuk, E.I. Davydova, M.V. Zverkov, V.P. Konyaev, V.V. Krichevsky, M.A. Ladugin, E.I. Lebedeva, S.V. Petrov, S.M. Sapozhnikov, V.A. Simakov, M.B. Uspensky, I.V. Yarotskaya, N.A. Pihtin, I.S. Tarasov. FTP, 45, 528 (2011). (in Russian)
  14. S.O. Slipchenko, A.A. Podoskin, D.A. Veselov, V.A. Strelets, N.A. Rudova, N.A. Pikhtin, T.A. Bagaev, M.A. Ladugin, A.A. Marmalyuk, P.S. Kop'ev. IEEE Photon. Technol. Lett., 34 (1), 35 (2022)
  15. J.J. Coleman, K.J. Beernink. J. Appl. Phys., 75, 1879 (1994). DOI: 10.1063/1.356333
  16. O.S. Soboleva, V.S. Golovin, V.S. Yuferev, P.S. Gavrina, N.A. Pihtin, S.O. Slipchenko, A.A. Podoskin. Semiconductors, 54, 575 (2020). DOI: 10.21883/FTP.2020.05.49265.9341
  17. L.A. Coldren, S.W. Corzine, M.L. Mashanovitch. Diode lasers and photonic integrated circuits (Hoboken-N.J., John Wiley \& Sons, 2012)
  18. A.E. Zhukov, M.V. Maksimov. Sovremennye inzhekcionnye lazery (SPb., Izd-vo Politekhn. un-ta, 2009). (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru