Formation of bound states and control of their localization in a double quantum dot at the edge of the two-dimensional topological insulator with magnetic barriers
Lavrukhina E. A.1, Khomitsky D. V.1, Telezhnikov A. V.1
1Nizhny Novgorod State University, Nizhny Novgorod, Russia
Email: ekaterina.a.lavrukhina@gmail.com
The model of the bound states in a double quantum dot formed by three magnetic barriers at the edge of two-dimensional topological insulator based on HgTe/CdTe quantum well is developed. The peculiarities of the energy spectrum, the probability density and the spin density of the quantum states are studied as a function of the orientation of the magnetization vector for the magnetic barriers. The wavefunction localization at the left and at the right of the anticrossing point in the spectrum is studied and the conclusion is made on the possibility of switching between the states with the localization area in different quantum dots by varying the polarization of the middle barrier. Keywords: topological insulator, magnetic barrier, double quantum dot, localization.
- B.A. Bernevig. Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, 2013) p. 117
- X.-L. Qi, S.-C. Zhang. Rev. Mod. Phys., 83, 1057 (2011). DOI: 10.1103/RevModPhys.83.1057
- B.A. Bernevig, T.L. Hughes, S.-C. Zhang. Science, 314, 1757 (2006). DOI: 10.1126/science.1133734
- M.I. Katsnelson, K.S. Novoselov, A.K. Geim. Nature Physics, 2, 620 (2006). DOI: 10.1038/nphys384
- C. Timm. Phys. Rev. B, 86, 155456 (2012). DOI: 10.1103/PhysRevB.86.155456
- G. Dolcetto, N. Traverso Ziani, M. Biggio, F. Cavaliere, M. Sassetti. Phys. Rev. B, 87, 235423 (2013). DOI: 10.1103/PhysRevB.87.235423
- G.J. Ferreira, D. Loss. Phys. Rev. Lett., 111, 106802 (2013). DOI: 10.1103/PhysRevLett.111.106802
- C.-H. Hsu, P. Stano, J. Klinovaja, D. Loss. Phys. Rev. B, 97, 125432 (2018). DOI: 10.1103/PhysRevB.97.125432
- X. Li, Z. Wu, W. Lou. Sci. Rep., 9, 9080 (2019). DOI: 10.1038/s41598-019-45067-5
- N. Travserso Ziani, C. Fleckenstein, L. Vigliotti, B. Trauzettel, M. Sassetti. Phys. Rev. B. 101, 195303 (2020). DOI: 10.1103/PhysRevB.101.195303
- Y.-X. Wang, F. Li. Phys. Rev. B, 104, 035202 (2021). DOI: 10.1103/PhysRevB.104.035202
- V.A. Sablikov. A.A. Sukhanov. Phys. Rev. B, 103, 155424 (2021). DOI: 10.1103/PhysRevB.103.155424
- S. Wolski, M. Inglot, C. Jasiukiewicz, K.A. Kouzakov, T. Maslowski, T. Szczepa.ski, S. Stagraczynski, R. Stagraczynski, V.K. Dugaev, L. Chotorlishvili. Phys. Rev. B, 106, 224418 (2022). DOI: 10.1103/PhysRevB.106.224418
- P.D. Kurilovich, V.D. Kurilovich, I.S. Burmistrov, M. Goldstein. Phys. Rev. B, 94, 155408 (2016). DOI: 10.1103/PhysRevB.94.155408
- D.V. Khomitsky, A.A. Konakov, E.A. Lavrukhina. J. Phys.: Condens. Matter, 34, 405302 (2022). DOI: 10.1088/1361-648X/ac8407
- W. Luo, X.-L. Qi. Phys. Rev. B, 87, 085431 (2013). DOI: 10.1103/PhysRevB.87.085431
- A.G. Mal'shukov. Phys. Rev. B, 90, 045311 (2014). DOI: 10.1103/PhysRevB.90.045311
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.