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Formation of bound states and control of their localization in a double

quantum dot at the edge of the two-dimensional topological insulator

with magnetic barriers
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The model of the bound states in a double quantum dot formed by three magnetic barriers at the edge of

two-dimensional topological insulator based on HgTe/CdTe quantum well is developed. The peculiarities of the

energy spectrum, the probability density and the spin density of the quantum states are studied as a function of

the orientation of the magnetization vector for the magnetic barriers. The wavefunction localization at the left and

at the right of the anticrossing point in the spectrum is studied and the conclusion is made on the possibility of

switching between the states with the localization area in different quantum dots by varying the polarization of the

middle barrier.
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1. Introduction

Topological insulators (TIs) constitute a special class

of materials characterized by the presence of a band

gap for bulk states and well conducting edge states

topologically protected from scattering on non-magnetic

impurities by time reversal symmetry [1–3]. The study

of topologically protected one-dimensional states in the

case of two-dimensional TI or surface states for three-

dimensional TI is of great interest related to the search for

methods of controlling such states and their localization,

including the implementation of information storage and

processing schemes on their basis. It is known that it is

impossible to localize such states using purely electrostatic

barriers due to Klein tunneling of massless fermions [4], so
magnetic barriers can be used to create bound states [5–7],

which partially destroy the scattering protection of edge

states.

Over the last five years, a significant number of works

have been published on the interaction of helicoidal boun-

dary states in TI with various barriers and defects, including

magnetic moments of different origin and localization. Thus,

the effects of nuclear spins on the transport properties of

the edge states [8], the effect of the magnetic manganese

ion on the quantum dot states in HgTe-based TI [9], and
the modelling of Majorana fermions in a superconductor

based on the model of magnetic barriers at the edge of

TI [10] were considered. A number of investigations has

been performed on the phases with high Chern numbers in

structures with TI and magnetic layers [11], as well as the

influence of point [12] and random defect distributions on

the dispersion of edge states in TI [13].

The mentioned works, which constitute only a small

fraction of the published ones, testify to a rather high

relevance of the topic related to the interaction of boundary

states in TI with magnetic barriers and the analysis of

localized states arising here. In spite of the rather wide

coverage of the problems, so far, in our opinion, no unified

views on the properties and potential application of localized

states in quantum dot systems created on the basis of TI

with the help of magnetic barriers have been developed,

which determines our interest to this problem, in particular

to the model of a double quantum dot created by three

magnetic barriers.

For a number of years, we have been developing a model

of localized states in quantum dots (QDs) formed at the

edge of a two-dimensional TI based on an HgTe/CdTe

quantum well using macroscopic magnetic barriers of finite

permeability. In particular, on the basis of the well-

known model of the interaction of an edge state with

a single magnetic impurity [14], our model has recently

been microscopically justified for the case of the interac-

tion of edge states in TI with a macroscopic magnetic

domain (barrier) located near the edge of TI [15]. The

possibility of forming a finite number of energy levels in

a one-dimensional QD, including a single pair of levels,

was shown.

In this work we continue the study of bound states,

but already in a double QD formed by three magnetic

barriers at the edge of a two-dimensional TI based on

the HgTe/CdTe quantum well. The main motivation for

investigating such a system is the possibility of switching

between states with wave function localization in the

left and right QDs by changing only the magnetization

polarization of one (central) barrier. In the mode of
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antiparallel orientation of the magnetization vectors of the

left and right barriers, anti-crossing points were found

when the distance between the levels is minimal and

the wave functions are localized with equal probability in

the left and right QDs. Outside the anti-crossing band,

alternating localization in the right and left QDs is observed

when the orientation of the central barrier magnetization

changes. Such controlled switching between states clearly

delimited in space allows us to hopefully utilize the

system under investigation for information storage and

processing.

2. Model

We consider a model of quantum states in a double

QD formed by magnetic barriers at the edge of a two-

dimensional TI based on an HgTe/CdTe quantum well.

The double QD is formed by two outermost very wide

magnetic barriers with heights (in energy units) M1 and

M2, and a central barrier of height Mb and width Lb .

In result, a left QD with width L1 and a right QD

with width L2 are formed. The states in the double

QD can be described by the Hamiltonian, which is a

generalization of the Hamiltonian from the work [15] for

the case of three magnetic barriers considered in this

work:

H = Akyσz − M1S(−L1 − y)(σx cos θ1 + σy sin θ1)

− Mb
(

S(y) − S(y − Lb)
)

(σx cos θb + σy sin θb)

− M2S(y − L2 − Lb)(σx cos θ2 + σy sin θ2). (1)

The first summand in (1) corresponds to the effective

Hamiltonian for one-dimensional helicoidal edge states

with a constant A = 360meV · nm associated with the

propagation velocity of states along the HgTe/CdTe [1–3]
based TI edge. The remaining terms describe the ef-

fect on the boundary states from magnetic barriers, the

profile of each of which is approximated by a step

function S(y). Such barriers can be made of magnetic

dielectric materials (magnetic insulators) that do not create

spin injection and do not lead to hybridization of the

states of the magnet and TI. Examples include MnSe

or EuS compounds, which application in TI structures

has been discussed, for example, in [16,17]. The linear

parameters L1, Lb, L2 specify the barrier boundaries and

width of each QD. The angular parameters θ1, θb, θ2
determine the orientations of the magnetization vectors

in the plane (x , y) for each of the barriers, and the

energy parameters M1, Mb, M2 represent the amplitudes

of the exchange interaction of the edge states with the

magnetic moments of the barriers [15]. For the Hamil-

tonian (1) the eigenfunctions have the form of two-

component spinors defined in each area of space by the

expressions
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Taking advantage of the continuity conditions of the wave

function at the boundaries of the barriers y = −L1, y = 0,

y = Lb and y = Lb + L2, we obtain a system of linear equa-

tions with respect to the coefficients B , C1,2, D1,2, H1,2, J .
The existence of a nontrivial solution of the system (2)
takes place under the condition that its determinant is zero,

which leads to the characteristic equation for the energy E
of discrete levels in the double QD. Next, we describe the

solutions of the system (2) for such values of the parameters

at which it is possible to control the localization band of the

wave functions.

3. Dependence of wave function
localization on polarization of barriers

After finding the coefficients for the wave function (2),
its localization band can be described through the sum of

the coefficients |C1|2 + |C2|2 for the left QD and through

the sum of |H1|2 + |H2|2 for the right QD. Let us introduce

the ratio of these probabilities

P ≡ |C1|2 + |C2|2
|H1|2 + |H2|2

, (3)

which will characterize the localization of the corresponding

wave function: at P ≫ 1 the wave function is localized in

the left QD, and at P ≪ 1 — in the right QD. The question

arises — how does the relation (3) for a given energy level

change when the system parameters are changed. Consider

the mode of antiparallel orientation of the magnetization of

the left and right barriers θ1 = 0, θ2 = π. Figure 1 shows

the structure of the system levels depending on the orienta-

tion of the magnetization of the central barrier θb . Other sys-

tem parameters L1,2,b = 100 nm, M1,2,b = 20meV. On each
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Figure 1. Energy spectrum as a function of the magnetization angle of the central barrier at θb at θ1 = 0, θ2 = π, L1,2,b = 100 nm,

M1,2,b = 20meV. Blue shows states with localization in the right QD when the ratio (4) P ≪ 1, orange — states with localization in

the left QD at P ≫ 1. The inset on the right shows the anti-crossing band for the dashed highlighted band when the wave functions of

levels (b, e) are localized simultaneously in two QDs. (The colored version of the figure is available on-line).
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Figure 2. Distributions along the double quantum dot structure for the probability density |ψ|2 (black solid line) and spin densities Sx

(lilac dashed line), Sy (orange solid line) for the energy levels (a, b, c) marked in Figure 1. (The colored version of the figure is available

on-line).

line, the relationship (3) is shown in color. In the -orange

and yellow bands, the wave function is almost completely

localized in the left QD, and in the blue and cyan bands —
in the right QD. For points on the spectrum (a−c), the

probability and spin densities are shown further in Figure 2.

The inset on the right in Figure 1 shows the band of

level convergence (anti-crossing) for the dotted band on the

left, when the wave functions of levels (b, e) are localized

simultaneously in two quantum dots. From Figure 1 we

can conclude that the spectrum contains anti-crossing at

the orientation of the central barrier magnetization θb = π
2

and θb = 3π
2
,while the convergence of levels is determined

by the permeability of the central barrier. By expanding

the dispersion equation near the anti-crossing point, we can

obtain an estimate for the magnitude of the slit in Figure 1 in

the form 1 ∼ (AM/L)1/2 exp(−LM/A). For the parameters

in Figure 1 we obtain that 1 = 0.033meV, which is a good

approximation for the results of the numerical calculation

presented in Figure 1. Note that the slit 1 has a maximum

at a small barrier height M0 = A/2L = 1.8meV, equal

to 1m ∼ 1.5meV, and then decreases with increasing M .

However, for applications in building qubits, such low

barriers and wide gaps in the spectrum are of little use. The

anti-crossing point is the point of change of the localization

band of the wave function for this level, as can be seen

from Figure 1. This effect appears to be robust to small

variations in the system parameters, since the levels of one

doublet away from the anti-crossing points are separated by

a significant gap from the other doublets, as can be seen

in Figure 1.

The localization of the wave function for specific states

can be clearly shown by visualizing the probability density

and spin projection densities. Figure 2 shows in rela-

tive units the probability density |ψ|2 and spin densities

Sx ,y = ψ+σx ,yψ for points (a, b, c) in the spectrum in

Figure 1. The absolute probability of finding an electron

in the left or right QD can be obtained by integrating

|ψ|2 over the given QD and is a value close to unity for

Figure 2, a, c and to 1/2 at each point for Figure 2, b if the

contribution from the barrier band is neglected. The third

projection of spin Sz for states (2) in our model is identically

zero [15]. It can be seen that as the angle θb passes through

the anti-crossing point, the localization area of the wave

function changes from (a) localization in the left QD, (b)
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localization in both QDs at the anti-crossing point, and (c)
localization in the right QD. A similar process is observed

for the levels (d−f) in Figure 1 with the reverse sequence of

localization areas. As can be seen from Figure 1, the change

interval θb near the anti-crossing point for the localization

band change can be relatively small, ∼ 20−30◦, which

should facilitate this state localization control mechanism.

4. Conclusion

A model of bound states in a double quantum dot at

the edge of a topological insulator based on an HgTe/CdTe

quantum well formed by three magnetic barriers is con-

structed. The features of the energy spectrum, probability

density and spin density depending on the parameters of

magnetic barriers are considered. Anti-crossing points were

found to depend on the polarization of the central barrier, to

the left and right of which localization of wave functions in

different quantum dots is observed. The considered methods

of controlling the localization of wave functions at the edge

of the topological insulator indicate the promising use of

such structures for the creation of new qubit circuits.
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