Low resistance state degradation during endurance measurements in HfO2/HfOXNY-based structures
Permyakova O. O. 1,2, Rogozhin A. E. 1, Myakonkih A. V. 1, Rudenko K. V.1
1Valiev Institute of Physics and Technology of RAS, Moscow, Russia
2Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
Email: o.permyakova@phystech.edu

PDF
The mechanism of resistive switching in Pt/HfO2(8 nm)/HfOXNY(4 nm)/TiN structures, in which there are two resistive switching modes: bipolar resistive switching and complementary resistive switching. We demonstrate that resistive switching without external current compliance is possible. It is shown experimentally that the conductivity in the low-resistance state corresponds to the space-charge-limited current. A qualitative model is proposed that describes the transition from bipolar resistive switching to complementary resistive switching using Schottky barrier modulation at the metal-insulator interface. Based on this model, an explanation is given for the degradation of the low-resistance state during endurance measurements. Keywords: memristor, hafnium oxide, complementary resistive switching, bipolar resistive switching, endurance.
  1. Q. Xia, J.J. Yang. Nature Materials, 18, 309 (2019)
  2. D. Liu, H. Yu, Y. Chai. Adv. Intell. Syst., 3, 2000150 (2021)
  3. B. Mohammad, M.A. Jaoude, V. Kumar, D.M. Al Homouz, H.A. Nahla, M. Al-Qutayri, N. Christoforou. Nanotechnol. Rev., 5, 311 (2016)
  4. A. Chen. IEEE Trans. Electron Dev., 62, 2845 (2015).
  5. S.U. Sharath, S. Vogel, L. Molina-Luna, E. Hildebrandt, C. Wenger, J. Kurian, M. Duerrschnabel, T. Niermann, G. Niu, P. Calka, M. Lehmann, H.-J. Kleebe, T. Schroeder, L. Alff. Adv. Funct. Mater., 27, 1700432 (2017)
  6. J. Choi, S. Kim. Coatings, 10, 765 (2020)
  7. M. Lanza, R. Waser, D. Ielmini, J.J. Yang, L. Goux, J. Sune, A.J. Kenyon, A. Mehonic, S. Spiga, V. Rana, S. Wiefels, S. Menzel, I. Valov, M.A. Villena, E. Miranda, X. Jing, F. Campabadal, M.B. Gonzalez, F. Aguirre, F. Palumbo, K. Zhu, J.B. Roldan, F.M. Puglisi, L. Larcher, T.-H. Hou, T. Prodromakis, Y. Yang, P. Huang, T. Wan, Y. Chai, K.L. Pey, N. Raghavan, S. Duenas, T. Wang, Q. Xia, S. Pazos. ACS Nano, 15, 17214 (2021)
  8. A.V. Fadeev, K.V. Rudenko. Mikroelektronika, 50 (347), (2021). (in Russian)
  9. P. Mark, W. Helfrich. J. Appl. Phys., 33, 205 (1962)
  10. F.-C. Chiu. Adv. Mater. Sci. Eng., 2014, 578168 (2014)
  11. A. Rohr, D. Moia, S.A. Haque, T. Kirchartz, J. Nelson. J. Phys. Condens. Matter, 30, 105901 (2018)
  12. O.O. Permiakova, A.E. Rogozhin, A.V. Miakonkikh, E.A. Smirnova, K.V. Rudenko. Microelectron. Eng., 275, 111983 (2023)
  13. S. Zi. Fizika poluprovodnikovyk priborov (M., Mir, 1984) book 1 (in Russian)
  14. Y. Guo, J. Robertson. Appl. Phys. Lett., 105, 223516 (2014)
  15. A. Schonhals, D. Wouters, A. Marchewka, T. Breuer, K. Skaja, V. Rana, S. Menzel, R. Waser. 2015 IEEE Int. Memory Workshop (IMW) (2015)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru