Features of Formation of InxGa1-xN Bulk Layers in the Immiscibility Gap of Solid Solutions (x~ 0.6) by Molecular Beam Epitaxy with Plasma Nitrogen Activation
Kalinnikov M.A.1, Lobanov D.N. 1, Kudryavtsev K.E.1, Andreev B.A.1, Yunin P.A.1, Krasilnikova L.V.1, Novikov A.V.1, Skorokhodov E.V1, Krasilnik Z.F.1,2
1Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
2Lobachevsky State University, Nizhny Novgorod, Russia
Email: kalinnikov@ipmras.ru

In this paper, the features of the formation of bulk InGaN layers with an indium content of ~ 60% in the immiscibility gap of InGaN ternary solid solutions by the method of molecular-beam epitaxy with plasma nitrogen activation are studied. The structures under study were grown on sapphire substrates, while the epitaxy temperature and the ratio of metal (In + Ga) and activated (atomic) nitrogen fluxes were varied. It has been demonstrated that the rates of thermal decomposition and phase separation for In0.6Ga0.4N ternary solutions depend nonmonotonically on the growth temperature in the range Tgr=430-470oC. It is shown that InGaN thermal decomposition processes occur on the growth surface and lead to the appearance of surface phases of metallic In and binary InN, while phase separation leads to the appearance of InGaN phases of various compositions throughout the volume of the deposited InGaN layer. It is shown that, in the temperature range under study, phase separation is determined by surface diffusion, which can be suppressed by growth under highly nitrogen-enriched conditions, which made it possible to obtain homogeneous InGaN layers with an In content of In ~ 60% during high-temperature (Tgr=470oC) growth. It is shown that the suppression of InGaN thermal decomposition processes is decisive in achieving effective interband luminescence of the obtained structures, while the presence of phase separation affects the radiative properties of InGaN layers to a lesser extent, at least in the region of low (T=77 K) temperatures. Keywords: indium and gallium nitride, molecular beam epitaxy, photoluminescence, thermal decomposition, spinodal decomposition.
  1. R. Kour, S. Arya, S. Verma, A. Singh, P. Mahajan, A. Khosla. ECS J. Solid State Sci. Technol., 9, 015011 (2020). DOI: 10.1149/2.0292001JSS
  2. Z.C. Feng, Handbook of Solid-State Lighting and LEDs (Boca Raton, FL, CRC Press, Taylor \& Francis Group, 2017) p. 3. DOI: 10.1201/9781315151595
  3. H. Morkoc, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M. Burns. J. Appl. Phys., 76, 1363 (1994). DOI: 10.1063/1.358463
  4. S.V. Ivanov, T.V. Shubina, T.A. Komissarova, V.N. Jmerik. J. Cryst. Growth, 403, 83 (2014). DOI: 10.1016/j.jcrysgro.2014.06.019
  5. G.B. Stringfellow. J. Cryst. Growth, 312, 735 (2010). DOI: 10.1016/j.jcrysgro.2009.12.018
  6. M.A. Der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, A. Di Carlo. Phys. Rev. Lett., 116, 027401 (2016). DOI: 10.1103/PhysRevLett.116.027401
  7. E.L. Piner, N.A. El-Mastry, S.X. Liu, S.M. Bedair. Mater. Res. Soc. Proc., 482, 125 (1998). DOI: 10.19009/jjacg.43.4_222
  8. S.Y. Karpov. MRS Internet J. Nitride Semicond. Res., 3 (1), 16 (1998). DOI: 10.1557/S1092578300000880
  9. S.Y. Karpov, N.I. Podolskaya, I.A. Zhmakin, A.I. Zhmakin Phys. Rev. B, 70, 235203 (2004). DOI: 10.1103/PhysRevB.70.235203
  10. E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, N.T. Pelekanos. Phys. Status Solidi A, 203 (1), 102 (2006). DOI: 10.1002/pssa.200563509
  11. C.A.M. Fabien, B.P. Gunning, W.A. Doolittle, A.M. Fischer, Y.O. Wei, H. Xie, F.A. Ponce. J. Cryst. Growth, 425, 115 (2015). DOI: 10.1016/j.jcrysgro.2015.02.014
  12. S.A. Kazazis, E. Papadomanolaki, M. Kayambaki, E. Iliopoulos. J. Appl. Phys., 123, 125101 (2018). DOI: 10.1063/1.5020988
  13. A.K. Tan, N.A. Hamzah, M.A. Ahmad, S.S. Ng, Z. Hassan. Mater Sci Semicond. Process., 143, 106545 (2022). DOI: 10.1016/j.mssp.2022.106545
  14. G. Koblmuller, C.S. Galliant, J.S. Speck. J. Appl. Phys. 101, 083516 (2007). DOI: 10.1063/1.2718884
  15. R. Averbeck, H. Riechert. Phys. Status Solidi A, 176, 301 (1999). DOI: 10.1002/(SICI)1521-396X(199911) 176:1<301::AID-PSSA301>3.0.CO;2-H
  16. B.A. Andreev, D.N. Lobanov, L.V. Krasil'nikova, K.E. Kudryavtsev, A.V. Novikov, P.A. Yunin, M.A. Kalinnikov, E.V. Skorokhodov, Z.F. Krasil'nik. FTP, 56, 7 (2022). (in Russian). DOI: 10.21883/FTP.2022.07.52763.18
  17. H. Komaki, T. Nakamura, R. Katayama, K. Onabe, M. Ozeki, T. Ikari. J. Cryst. Growth, 301, 473 (2007). DOI: 10.1016/j.jcrysgro.2006.11.123
  18. A. Kraus, S. Hammadi, J. Hisek, R. Bub, H. Jonen, H. Bremers, A. Hangleiter. J. Cryst. Growth, 323 (1), 72 (2011). DOI: 0.1016/j.jcrysgro.2010.10.124
  19. K.E. Kudryavtsev, D.N. Lobanov, L.V. Krasilnikova, A.N. Yablonskiy, P.A. Yunin, E.V. Skorokhodov, M.A. Kalinnikov, A.V. Novikov, B.A. Andreev, Z.F. Krasilnik. ECS J. Solid State Sci. Technol., 11, 014003 (2022). DOI: 10.1149/2162-8777/ac4d80
  20. C.S. Gallinat, G. Koblmuller, J.S. Speck. Appl. Phys. Lett., 95, 022103 (2009). DOI: 10.1063/1.3173202

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru