Two-frequency stimulated emission in Hg(Cd)Te/CdHgTe heterostructure
Fadeev M. A.1, Yantser A. A.1,2, Dubinov A. A. 1,2, Kozlov D. V.1,2, Rumyantsev V. V. 1,2, Mikhailov N. N.3, Gavrilenko V. I.1,2, Morozov S. V.1,2
1Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
2Lobachevsky State University, Nizhny Novgorod, Russia
3Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: fadeev@ipmras.ru

PDF
In this work, we studied the spectra of stimulated emission of a waveguide heterostructure with quantum wells based on HgCdTe. In the course of the studies, we used optical pumping, at wavelengths of 2 and 2.3 μm, which are mainly absorbed, in the barriers and quantum wells, respectively. It was found that in both cases optical pumping leads to stimulated emission, with a wavelength corresponding to the energy of the fundamental transition in quantum wells, it being 138 meV. With pumping absorbed in barriers, it was found that a short-wavelength emission line with an energy of 248 meV appeared on the spectra, which can be attributed to transitions involving deep donor levels. At liquid nitrogen temperature, increasing the pumping intensity leads to the appearance of a narrow peak in the short-wave line and, by selecting the pumping parameters, two-frequency generation at 5 and 7 μm wavelengths can be achieved. Keywords: narrow-gap semiconductors, HgCdTe, deep donors, stimulated emission.
  1. A. Rogalski. Rep. Progr. Phys., 68 (10), 2267 (2005)
  2. B.A. Bernevig, T.L. Hughes, S.C. Zhang. Science, 314 (5806), 1757 (2006)
  3. S.V. Morozov, V.V. Rumyantsev, M.S. Zholudev, A.A. Dubinov, V.Y. Aleshkin, V.V. Utochkin, M.A. Fadeev, K.E. Kudryavtsev, N.N. Mikhailov, S.A. Dvoretskii, V.I. Gavrilenko, F. Teppe. ACS Photonics, 8 (12), 3526 (2021)
  4. S.V. Morozov, V.V. Rumyantsev, M.A. Fadeev, M.S. Zholudev, K.E. Kudryavtsev, A.V. Antonov, A.M. Kadykov, A.A. Dubinov, N.N. Mikhailov, S.A. Dvoretsky, V.I. Gavrilenko. Appl. Phys. Lett., 111 (19), 192101 (2017)
  5. K.E. Kudryavtsev, V.V. Rumyantsev, V.Y. Aleshkin, A.A. Dubinov, V.V. Utochkin, M.A. Fadeev, N.N. Mikhailov, G. Alymov, D. Svintsov, V.I. Gavrilenko, S.V. Morozov. Appl. Phys. Lett., 117 (8), 083103 (2020)
  6. M.A. Fadeev, A.O. Troshkin, A.A. Dubinov, V.V. Utochkin, A.A. Razova, V.V. Rumyantsev, V.Y. Aleshkin, V.I. Gavrilenko, N.N. Mikhailov, S.A. Dvoretsky, S.V. Morozov. Opt. Eng., 60 (08), 1 (2020)
  7. A.M. Kadykov, F. Teppe, C. Consejo, L. Viti, M.S. Vitiello, S.S. Krishtopenko, S. Ruffenach, S.V. Morozov, M. Marcinkiewicz, W. Desrat, N. Dyakonova, W. Knap, V.I. Gavrilenko, N.N. Mikhailov, S.A. Dvoretsky. Appl. Phys. Lett., 107 (15), 152101 (2015)
  8. Y. Yao, A.J. Hoffman, C.F. Gmachl. Nat. Photonics, 6 (7), 432 (2012)
  9. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, M. Razeghi. Appl. Phys. Lett., 98 (18), 181102 (2011)
  10. I. Vurgaftman, W.W. Bewley, C.L. Canedy, C.S. Kim, M. Kim, C.D. Merritt, J. Abell, J.R. Lindle, J.R. Meyer. Nat. Commun., 2 (1), 585 (2011)
  11. R.Q. Yang, J.L. Bradshaw, J.D. Bruno, J.T. Pham, D.E. Wortman. IEEE J. Quant. Electron., 37 (2), 282 (2001)
  12. J.O. Dimmock, I. Melngailis, A.J. Strauss. Phys. Rev. Lett., 16 (26), 1193 (1966)
  13. L. Kurbatov, A. Britov, S. Karavaev, S. Sivachenko, S. Maksimovskii, I. Ovchinnikov, M. Rzaev, P. Starik. Sov. J. Exp. Theor. Phys. Lett., 37, 422 (1983)
  14. N.N. Mikhailov, R.N. Smirnov, S.A. Dvoretsky, Y.G. Sidorov, V.A. Shvets, E.V. Spesivtsev, S.V. Rykhlitski. Int. J. Nanotechnol., 3 (1), 120 (2006)
  15. M.A. Fadeev, A.A. Dubinov, V.Ya. Aleshkin, V.V. Rumyantsev, V.V. Utochkin, V.I. Gavrilenko, F. Teppe, H.-V.H.-V. Hubers, N.N. Mikhailov, S.A. Dvoretsky, F. Tepe, H.-V.H.-V. Hubers, N.N. Mikhailov, S.A. Dvoretsky, F. Teppe, H.-V.H.-V. Hubers, N.N. Mikhailov, S.A. Dvoretsky, S.V. Morozov. Kvant. elektron., 49 (6), 556 (2019). (in Russian)
  16. K.E. Kudryavtsev, V.V. Rumyantsev, V.V. Utochkin, M.A. Fadeev, V.Y. Aleshkin, A.A. Dubinov, M.S. Zholudev, N.N. Mikhailov, S.A. Dvoretskii, V.G. Remesnik, F. Teppe, V.I. Gavrilenko, S.V. Morozov. J. Appl. Phys., 130 (21), (2021)
  17. C.W. Myles, P.F. Williams, R.A. Chapman, E.G. Bylander. J. Appl. Phys., 57 (12), 5279 (1985)
  18. J. Shao, L. Chen, W. Lu, X. Lu, L. Zhu, S. Guo, L. He, J. Chu. Appl. Phys. Lett., 96 (12), 1 (2010)
  19. K. Lischka. Phys. Status Solidi, 133 (1), 17 (1986)
  20. D.L. Polla, R.L. Aggarwal. Appl. Phys. Lett., 44 (8), 775 (1984)
  21. S.V. Morozov, V.V. Rumyantsev, A.V. Antonov, A.M. Kadykov, K.V. Maremyanin, K.E. Kudryavtsev, N.N. Mikhailov, S.A. Dvoretskii, V.I. Gavrilenko. Appl. Phys. Lett., 105 (2), 22102 (2014)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru