Terahertz radiation sources with an active region based on super-multiperiod AlGaAs/GaAs superlattices
Dashkov A. S. 1,2, Gerchikov L. G. 1,3, Goray L. I. 1,2,4,5, Kostromin N. A. 2,3, Bouravleuv A. D.2,4,5
1Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
2St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
3Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
4Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
5University under the Inter-Parliamentary Assembly of EurAsEC, St. Petersburg, Russia
Email: dashkov.alexander.om@gmail.com

PDF
In this article, several designs of the active region of the THz radiation source are considered, taking into account grown super-multiperiod AlGaAs/GaAs superlattices. For the proposed designs, the principal device characteristics are computed: energy band diagram, gain spectrum, and transport characteristics. Based on the calculation results, the authors proposed an optimal design of the active region of a tunable THz radiation source. Keywords: super-multiperiod superlattice, light amplifiers, terahertz range, finite elements method, gain estimation.
  1. N.V. Kinev, K.I. Rudakova, L.V. Filippenko, V.P. Koshelets, FTT, 63 (9), 1204 (2021) (in Russian)
  2. S.L. Dexheimer. Terahertz Spectroscopy: Principles and Applications (N.Y., CRC Press, 2008) p. 360
  3. M.C. Beard, G.M. Turner, C.A. Schmuttenmaer. J. Phys. Chem. B, 106 (29), 7146 (2002)
  4. J.B. Baxter, G.W. Guglietta. Anal. Chem., 83 (12), 4342 (2011)
  5. A.G. Davies, A.D. Burnett, W. Fan, E.H. Linfield, J.E. Cunningham. Materials Today, 11 (3), 18 (2008)
  6. J. True, C. Xi, N. Jessurun, K. Ahi, N. Asadizanjani. Opt. Eng., 60 (6), 060901 (2021)
  7. M.O. Mattsson, M. Simko. Med. Devices (Auckl.), 12, 347 (2019)
  8. K. Tekbiyik, A.R. Ekti, G.K. Kurt, A. Gorcin. Phys. Commun., 35, 100700 (2019)
  9. A. Khalatpour, A.K. Paulsen, C. Deimert, Z.R. Wasilewski, Q. Hu. Nature Photonics, 15, 16 (2021)
  10. A.A. Andronov, A.V. Ikonnikov, K.V. Maremianin, V.I. Pozdnjakova, Y.N. Nozdrin, A.A. Marmalyuk, A.A. Padalitsa, M.A. Ladugin, V.A. Belyakov, I.V. Ladenkov, A.G. Fefelov. J. Semiconductors, 52, 431 (2018)
  11. A.A. Andronov, E.P. Dodin, D.I. Zinchenko, Yu.N. Nozdrin, M.A. Ladugin, A.A. Marmalyuk, A.A. Padalitsa, V.A. Belyakov, I.V. Ladenkov, A.G. Fefelov. JETP Lett., 102, 207 (2015)
  12. A.A. Andronov, I.M. Nefedov, A.V. Sosnin. J. Semiconductors, 37, 360 (2003)
  13. C. Jirauschek, T. Kubis. Appl. Phys. Rev., 1 (1), 011307 (2014)
  14. P. Harrison, A. Valavanis. Quantium wells, wires and dots: theoreticall and computation physics of semiconductor nanostructure (West Sussex, UK: Hoboken, NG: John Wiley \& Sons, Inc., 2016) p. 624
  15. A.S. Dashkov, L.I. Goray. J. Phys.: Conf. Ser., 1410, 012085 (2019)
  16. A.S. Dashkov, L.I. Goray. J. Semiconductors, 54, 1823 (2020)
  17. V.E. Gasumyants, D.A. Firsov, Elektrony i fonony v kvantorazmernykh sistemakh (SPb., Izd-vo Politekhn. un-ta, 2008) p. 96. (in Russian)
  18. H.S. Cho, P.R. Prucnal. Phys. Rev. B, 36, 3237 (1987)
  19. F. Szmulowicz. Eur. J. Phys., 18 (5), 392 (1997)
  20. A.Yu. Egorov. Avtoref. dokt. dis. (SPb, SPbAU RAN, 2011). (in Russian)
  21. I. Vurgaftman, J.R. Meyer. J. Appl. Phys., 94 (6), 3675 (2003)
  22. B.S. Williams. Synopsis of the dissertation of M. S. in EECS (Cambridge, Massachusetts, MIT, 1998)
  23. H. Kogelnik. Theory of optical waveguides (Heidelberg, Springer Verlag, 1988) p. 82
  24. A.A. Andronov, E.P. Dodin, D.I. Zinchenko, Yu.N. Nozdrin, FTP, 43 (2), 248 (2009). (in Russian)
  25. L.I. Goray, E.V. Pirogov, M.S. Sobolev, N.K. Polyakov, A.S. Dashkov, M.V. Svechnikov, A.D. Buravlev, ZhTF, 90 (11), 1906 (2020). (in Russian)
  26. L.I. Goray, E.V. Pirogov, M.S. Sobolev, N.K. Polyakov, A.S. Dashkov, M.V. Svechnikov, A.D. Buravlev, Pisma ZHTF, 47 (15), 7 (2021). (in Russian)
  27. L. Goray, E. Pirogov, M. Sobolev, I. Ilkiv, A. Dashkov, E. Nikitina, E. Ubyivovk, L. Gerchikov, A. Ipatov, Y. Vainer, M. Svechnikov, P. Yunin, N. Chkhalo, A. Bouravlev. J. Phys. D: Appl. Phys., 53, 455103 (2020)
  28. D.S. Smotrin, N.V. Baidus, A.A. Bryukov, O.S. Komkov, O.E. Gordyushenkov. Tez. dokl. XIX Mezhd. simp. "Nanofizika i nanoelektronika" (N. Novgorod, Russia, 2012), v. 2, p. 388. (in Russian)
  29. V.D. Goryacheva, M.S. Mironova, O. S. Komkov. J. Phys.: Conf. Ser., 1038, 012124 (2018)
  30. L.G. Gerchikov, A.S. Dashkov, A.D. Buravlev, ZhETF 160 (2), 197 (2021). (in Russian)
  31. D.O. Winge, M. Franckie, A. Wacker. AIP Advances, 6 (4), 045025 (2016).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru