Energy structure of multiexcitons in quantum wires with a longitudinal confining potential
Kumar R.1,2, Telenkov M. P. 1, Mityagin Yu.A. 1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
2National University of Science and Technology MISiS, Moscow, Russia
Email: rkravi365@gmail.com, maxim_telenkov@mail.ru, yumityagin@mail.ru

PDF
The energy spectra of many-particle excitons in quantum wires with a longitudinal confining potential providing a confinement energy comparable with the characteristic energy of the Coulomb interaction of charge carriers are calculated. It has been found that, upon excitation of one of the charge carriers, the binding energy of a multiexciton decreases by a value several times greater than the confinement energy. Key words: quantum wires with longitudinal confining potential; multiparticle excitons. DOI: 10.61011/SC.2023.04.56426.20k
  1. M. Lazarev, J. Szeszko, A. Rudra, K.F. Karlsson, E. Kapon. J. Cryst Growth, 414, 196 (2015). DOI: http://dx.doi.org/10.1016/j.jcrysgro.2014.11.008
  2. Q. Zhu, J.D. Ganiere, Z.B. He, K.F. Karlsson, M. Byszewski, E. Pelu A. Rudra, E. Kapon. Phys. Rev. B, 82, 165315 (2010). DOI: https://doi.org/10.1103/PhysRevB.82.165315
  3. V. Troncale, K.F. Karlsson, E. Pelucchi, A. Rudra, E. Kapon. Appl. Phys. Lett., 91, 241909 (2007). DOI: https://doi.org/10.1063/1.2820693
  4. J. He, H.J. Krenner, C. Pryor, J.P. Zhang, Y. Wu, D.G. Allen, C.M. Morris, M.S. Sherwin, P.M. Petroff. Nano Lett., 7 (3) 802 (2007). DOI: https://doi.org/10.1021/nl070132r
  5. G. Biasiol, E. Kapon. Appl. Phys. Lett., 81, 2962 (1998). DOI: https://doi.org/10.1103/PhysRevLett.81.2962
  6. Q. Zhu, E. Pelucchi, S. Dalessi, K. Leifer, M.-A. Dupertuis, E. Kap Nano Lett., 6 (5) 1036 (2006). DOI: https://doi.org/10.1021/NL060066D
  7. M.H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip I. Abram. Appl. Phys. Lett., 84, 648 (2004). DOI: https://doi.org/10.1063/1.1643533
  8. Y. Arakawa, M.J. Holmes. Appl. Phys. Rev., 7, 021309 (2020). DOI: https://doi.org/10.1063/5.0010193
  9. T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, Y. Arakawa. Appl. Phys. Lett., 109 (13), 132106 (2016). DOI: https://doi.org/10.1063/1.4961888
  10. G. Bastard. Wave mechanics applied to semiconductor heterostructures (Wiley-Interscience, 1998)
  11. I. Vurgaftmana, J.R. Meyer, L.R. Ram-Mohan. J. Appl. Phys., 89 (11), 5815 (2001). DOI: https://doi.org/10.1063/1.1368156
  12. J. Szeszko, V.V. Belykh, A. Rudra, B. Dwir, N.N. Sibeldin, E. Kapon. Phys. Rev. B, 91, 245304 (2015). DOI: https://doi.org/10.1103/PhysRevB.91.245304

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru