SERS-active substrates based on embedded Ag nanoparticles in c-Si: modeling, technology, application
Ermina A. A. 1, Solodovchenko N. S. 2, Prigoda K. V.1,3, Levitskii V. S. 4, Pavlov S. I. 1, Zharova Yu. A. 1
1Ioffe Institute, St. Petersburg, Russia
2 ITMO University, St. Petersburg, Russia
3Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
4R&D Center of Thin Film Technologies in Energetics under the Ioffe Institute LLC, St. Petersburg, Russia
Email: annaermina97@gmail.com, n.solodovchenko@metalab.ifmo.ru, kristina_prigoda@mail.ru, lev-vladimir@yandex.ru, Pavlov_sergey@mail.ioffe.ru, piliouguina@mail.ioffe.ru

PDF
A simple method for obtaining SiO2 : Ag : Si and Ag : Si hybrid nanostructures is presented. High-temperature annealing of an Ag island film on the surface of c-Si makes it possible to preserve the plasmonic properties of Ag nanoparticles and protect them from external influences by coating them with a thermally grown layer of SiO2. The calculation of the electric field strength distribution in the structure with embedded Ag nanoparticles in c-Si demonstrates the presence of intrinsic "hot spots" at the corners of the nanoparticles, which leads to a maximum enhancement factor (~106) of Raman scattering. A numerical calculation of the dependence of the spectral position of a localized plasmon resonance on the geometry of structures can serve as a basis for their design in the future. Surface-enhanced Raman scattering showed reliable detection of the methyl orange from an aqueous solution at a concentration of <10-5 M. Keywords: SERS, Ag nanoparticles, c-Si, methyl orange, localized plasmon resonance. DOI: 10.61011/SC.2023.04.56420.07k
  1. J. Langer, et. al. ACS Nano, 149 (1), 28 (2020). https://doi.org/10.1021/acsnano.9b04224
  2. R. Wu, T. Mathieu, C.J. Storey, Q. Jin, J. Collins, L.T. Canham, A. Kaplan. Adv. Optical Mater., 9, 2002119 (2021). https://doi.org/10.1002/adom.202002119
  3. C. Zong, M. Xu, L.-J. Xu, T. Wei, X. Ma, X.-S. Zheng, R. Hu, B. Ren. Chem. Rev., 118 (10), 4946 (2018). https://doi.org/10.1021/acs.chemrev.7b00668
  4. L. Xie, H. Zeng, J. Zhu, Z. Zhang, W. Xia. Nano Res., 15, 4374 (2022). https://doi.org/10.1007/s12274-021-4017-4
  5. Q. Zou, S. Mo, X. Pei, Y. Wang, T. Xue, M. Mayilamu, G. Qin. AIP Advances, 8, 085302 (2018). https://doi.org/10.1063/1.5039600
  6. J. Wang, Z. Jia, C. Lv. Opt. Express, 26, 6507 (2018). https://doi.org/10.1364/OE.26.006507
  7. A.A. Ermina, N.S. Solodovchenko, K.V. Prigoda, V.S. Levitskii, V.O. Bolshakov, M.Yu. Maximov, Yu.M. Koshtyal, S.I. Pavlov, V.A. Tolmachev, Yu.A. Zharova. Appl. Surf. Sci., 608, 155146 (2023). https://doi.org/10.1016/j.apsusc.2022.155146
  8. Z. Zhang, J. Wang, K.B. Shanmugasundaram, B. Yeo, A. Moller, A. Wuethrich, L.L. Lin, M. Trau. Small, 16, 1905614 (2020). https://doi.org/10.1002/smll.201905614
  9. S. Bamrungsap, A. Treetong, C. Apiwat, T. Wuttikhun, T. Dharakul. Microchim. Acta, 183, 249 (2016). https://doi.org/10.1007/s00604-015-1639-9
  10. W. Kim, S.H. Lee, J.H. Kim, Y.J. Ahn, Y.-H. Kim, J.S. Yu, S. Choi. ACS Nano, 12 (7), 7100 (2018). https://doi.org/10.1021/acsnano.8b02917
  11. D. Zhang, P. Liang, Z. Yu, J. Xia, D. Ni, D. Wang, Y. Zhou, Y. Cao, J. Chen, J. Chen, S. Jin. J. Hazard. Mater., 382, 121023 (2020). https://doi.org/10.1016/j.jhazmat.2019.121023
  12. W. Fan, S. Yang, Y. Zhang, B. Huang, Z. Gong, D. Wang, M. Fan. ACS Sensors, 5 (11), 3599 (2020). https://doi.org/10.1021/acssensors.0c01908
  13. T. Liyanage, A. Rael, S. Shaffer, S. Zaidi, J.V. Goodpaster, R. Sardar. Analyst, 143, 2012 (2018). https://doi.org/10.1039/C8AN00008E
  14. H. Sun, X. Li, Z. Hu, C. Gu, D. Chen, J. Wang, B. Li, T. Jiang, X. Zhou. Appl. Surf. Sci., 556, 149748 (2021). https://doi.org/10.1016/j.apsusc.2021.149748
  15. X. He, X. Zhou, Y. Liu, X. Wang. Sensors Actuators B: Chem., 311, 127676 (2020). https://doi.org/10.1016/j.snb.2020.127676
  16. Z. Deng, X. Chen, Y. Wang, E. Fang, Z. Zhang, X. Chen. Anal. Chem., 87 (1), 633 (2015). https://doi.org/10.1021/ac503341g
  17. J. Chen, Y. Huang, P. Kannan, L. Zhang, Z. Lin,J. Zhang, T. Chen, L. Guo. Anal. Chem., 88 (4), 2149 (2016). https://doi.org/10.1021/acs.analchem.5b03735
  18. E. Galopin, J. Niedzi ka-Jonsson, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A. Noual, R. Boukherroub, S. Szunerits. J. Phys. Chem. C, 114 (27), 11769 (2010). https://doi.org/10.1021/jp1023839
  19. K. Kneipp, M. Moskovits, H. Kneipp. Surface-Enhanced Raman Scattering: Physics and Applications (Springer Verlag Berlin--Heidelberg, 2006). https://doi.org/10.1007/3-540-33567-6
  20. M.-C. Wu, M.-P. Lin, S.-W. Chen, P.-H. Lee, J.-H. Li, W.-F. Su. RSC Advances, 4, 10043 (2014). https://doi.org/10.1039/C3RA45255G
  21. E. Galopin, A. Noual, J. Niedzi ka-Jonsson, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A. Noual, R. Boukherroub, S. Szunerits. J. Phys. Chem. C, 113, 15921 (2009). https://doi.org/10.1021/jp905154z
  22. R.P. Van Duyne (ed. by C.B. Moore). (N. Y., Academic Press, 1979) p. 101
  23. P. Hildebrandt, M. Stockburger. J. Phys. Chem., 88, 5935 (1984). https://doi.org/10.1021/j150668a038
  24. V.A. Tolmachev, E.V. Gushchina, I.A. Nyapshaev, Yu.A. Zharova. Thin Sol. Films, 139352 (2022). https://doi.org/10.1016/j.tsf.2022.139352
  25. Y. Zharova, A. Ermina, S. Pavlov, Y. Koshtyal, V. Tolmachev. Phys. Status Solidi A, 216, 1900318 (2019). https://doi.org/10.1002/pssa.201900318
  26. U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters (Springer Series in Materials Science, 1995). doi:10.1007/978-3-662-09109-8
  27. J. Chowdhury, M. Ghosh. J. Colloid Interface Sci., 277, 121 (2004). https://doi.org/10.1016/j.jcis.2004.04.030
  28. A. Zarei, A. Shafiekhani. Mater. Chem. Phys., 242, 122559 (2020). https://doi.org/10.1016/j.matchemphys.2019.122559
  29. M.Z. Si, Y.P. Kang, Z.G. Zhang. Appl. Surf. Sci., 255 (11), 6007 (2009). https://doi.org/10.1016/j.apsusc.2009.01.055

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru