Temperature dependence of the Fermi level in HgCdTe narrow-gap bulk films at different mercury vacancy concentrations
Kozlov D. V. 1,2, Zholudev M. C. 1,2, Rumyantsev V. V. 1,2, Ikonnikov A. V. 3, Pavlov S.4, Hubers H.-W.4,5, Morozov S. V. 1,2
1Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
2Lobachevsky State University, Nizhny Novgorod, Russia
3Department of Physics, Lomonosov Moscow State University, Moscow, Russia
4Institute of Optical Sensor Systems German Aerospace Center (DLR), Berlin, Germany
5Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
Email: dvkoz@ipmras.ru

PDF
We calculate Fermi level position in bulk HgCdTe with cadmium fraction from 19 to 22% as a function of temperature for different concentrations of mercury vacancies forming double-charged acceptors with ionization energies of 11 and 21 meV for neutral and singly charged states respectively. The concentration of free carriers in the bands at different temperatures and the proportion of acceptor centres in different charge states are calculated as well. The results explain the fast temperature quenching of photoconductivity involving the vacancies states. It is also shown that in a p-type material conductivity dependence on temperature includes an exponential growth region with a characteristic energy much greater than a half of the bandgap at zero temperature expected for an intrinsic semiconductor. Keywords: narrow-gap semiconductors, HgCdTe, Fermi level, doubly charged acceptors.
  1. W. Lei, J. Antoszewski, L. Faraone. Appl. Phys. Rev., 2 (4), 041303 (2015)
  2. A. Rogalski. Opto-Electron. Rev., 20 (3), 279 (2012)
  3. A. Rogalski. Rep. Progr. Phys., 68 (10), 2267 (2005)
  4. V.S. Varavin, V.V. Vasiliev, S.A. Dvoretsky, N.N. Mikhailov, V.N. Ovsyuk, Y.G. Sidorov, A.O. Suslyakov, M.V. Yakushev, A.L. Aseev. Proc. SPIE, 5136, 381 (2003)
  5. S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, S. Ganichev. J. Electron. Mater., 39 (7), 918 (2010)
  6. N.N. Mikhailov, R.N. Smirnov, S.A. Dvoretsky, Yu.G. Sidorov, V.A. Shvets, E.V. Spesivtsev, S.V. Rykhlitski. Int. J. Nanotechnol., 3 (1), 120 (2006)
  7. B.A. Bernevig, T.L. Hughes, S.C. Zhang. Science, 314 (5806), 1757 (2006)
  8. C. Brune, C.X. Liu, E.G. Novik, E.M. Hankiewicz, H. Buhmann, Y.L. Chen, X.L. Qi, Z.X. Shen, S.C. Zhang, L.W. Molenkamp. Phys. Rev. Lett., 106 (12), 126803 (2011)
  9. B. Buttner, C.X. Liu, G. Tkachov, E.G. Novik, C. Brune, H. Buhmann, E.M. Hankiewicz, P. Recher, B. Trauzettel, S.C. Zhang, L.W. Molenkamp. Nature Physics, 7 (5), 418 (2011)
  10. F. Teppe, M. Marcinkiewicz, S.S. Krishtopenko, S. Ruffenach, C. Consejo, A.M. Kadykov, W. Desrat, D. But, W. Knap, J. Ludwig, S. Moon, D. Smirnov, M. Orlita, Z. Jiang, S.V. Morozov, V.I. Gavrilenko, N.N. Mikhailov, S.A. Dvoretskii. Nature Commun., 7, 12576 (2016)
  11. D.B. But, M. Mittendorff, C. Consejo, F. Teppe, N.N. Mikhailov, S.A. Dvoretskii, C. Faugeras, S. Winnerl, M. Helm, W. Knap, M. Potemski, M. Orlita. Nature Photonics, 13 (11), 783-787 (2019)
  12. M. Orlita, D.M. Basko, M.S. Zholudev, F. Teppe, W. Knap, V.I. Gavrilenko, N.N. Mikhailov, S.A. Dvoretskii, P. Neugebauer, C. Faugeras, A.L. Barra, G. Martinez, M. Potemski. Nature Physics, 10 (3), 233 (2014)
  13. G. Alymov, V. Rumyantsev, S. Morozov, V. Gavrilenko, V. Aleshkin, D. Svintsov. ACS Photonics, 7 (1), 98 (2020)
  14. S.V. Morozov, V.V. Rumyantsev, M.S. Zholudev, A.A. Dubinov, V.Y. Aleshkin, V.V. Utochkin, M.A. Fadeev, K.E. Kudryavtsev, N.N. Mikhailov, S.A. Dvoretskii, V.I. Gavrilenko, F. Teppe. ACS Photonics, 8 (12), 3526 (2021)
  15. S. Krishnamurthy, M.A. Berding, Z.G. Yu. J. Electron. Mater., 35 (6), 1369 (2006)
  16. J. Shao, X. Lu, S. Guo, W. Lu, L. Chen, Y. Wei, J. Yang, L. He, J. Chu. Phys. Rev. B, 80 (15), 5125 (2009)
  17. X. Zhang, J. Shao, L. Chen, X. Lu, S. Guo, L. He, J. Chu. J. Appl. Phys., 110 (4), 043503 (2011)
  18. F. Gemain, I.C. Robin, G. Feuillet. J. Appl. Phys., 114 (21), 213706 (2013)
  19. K.D. Mynbaev, A.V. Shilyaev, N.L. Bazhenov, A.I. Izhnin, I.I. Izhnin, N.N. Mikhailov, V.S. Varavin, S.A. Dvoretsky. Semiconductors, 49 (3), 367 (2015)
  20. M.V. Yakushev, K.D. Mynbaev, N.L. Bazhenov, V.S. Varavin, N.N. Mikhailov, D.V. Marin, S.A. Dvoretsky, Y.G. Sidorov. Phys. Status Solidi C, 13 (7-9), 469 (2016)
  21. S.G. Pavlov, L.M. Portsel, V.B. Shuman, A.N. Lodygin, Y.A. Astrov, N.V. Abrosimov, S.A. Lynch, V.V. Tsyplenkov, H.W. Hubers. Phys. Rev. Mater., 5 (11), 114607 (2021)
  22. D.V. Kozlov, V.V. Rumyantsev, S.V. Morozov, A.M. Kadykov, M.A. Fadeev, M.S. Zholudev, V.S. Varavin, N.N. Mikhailov, S.A. Dvoretsky, V.I. Gavrilenko, F. Teppe. ZhETF , 154, 1226 (2018)
  23. D.V. Kozlov, T.A. Uaman Svetikova, A.V. Ikonnikov, V.V. Rumyantsev, A.A. Razova, M.S. Zholudev, N.N. Mikhailov, S.A. Dvoretsky, V.I. Gavrilenko, S.V. Morozov. Pis'ma ZhETF, 113 (6), 399 (2021) (in Russian)
  24. V.V. Rumyantsev, D.V. Kozlov, S.V. Morozov, M.A. Fadeev, A.M. Kadykov, F. Teppe, V.S. Varavin, M.V. Yakushev, N.N. Mikhailov, S.A. Dvoretskii, V.I. Gavrilenko. Semicond. Sci. Techn., 32 (9), 095007 (2017)
  25. P.A. Bakhtin, S.A. Dvoretsky, V.S. Varavin, A.P. Korobkin, N.N. Mikhailov, I.V. Sabinina, Yu.G. Sidorov. FTP, 38 (10), 1207 (2004) (in Russian)
  26. J.P. Laurenti, J. Camassel, A. Bouhemadou, B. Toulouse, R. Legros, A. Lusson. J. Appl. Phys., 67 (10), 6454 (1990)
  27. P.S. Wijewarnasuriya, M. Boukerche, J.P. Faurie. J. Appl. Phys., 67 (2), 859 (1990).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru