XXVI International Symposium Nanophysics and Nanoelectronics", Nizhny Novgorod, March 14-March 17, 2022 Effect of chemical passivation of GaAs(001) surface on anisotropy and orientation of gold nanoclusters formed on it and their plasmons
Berkovits V. L.1, Kosobukin V. A.
1, Ulin V. P.1, Alekseev P. A.1, Soldatenkov F. Yu.1, Levitskii V. S.2
1Ioffe Institute, St. Petersburg, Russia
2R&D Center of Thin Film Technologies in Energetics under the Ioffe Institute LLC, St. Petersburg, Russia
Email: vladimir.berkovits@mail.ioffe.ru, vladimir.kosobukin@mail.ioffe.ru, vladimir_ulin@rambler.ru, npoxep@gmail.com, f.soldatenkov@mail.ioffe.ru, lev-vladimir@yandex.ru
The principal role of chemical passivation of GaAs surface in the formation on it of oriented anisotropic nanoclusters of gold is discussed. The nanoclusters are fabricated by thermal annealing of a gold film deposited onto GaAs(001) surface passivated as a preliminary by a monolayer of nitrogen or sulfur atoms. These atoms, bonded chemically to gallium atoms of the crystal surface, form a crystal lattice and prevent the chemical interaction of Au with GaAs. As a result of annealing, the arrays of anisotropic (elongated) nanoclusters of chemically pure Au oriented preferably in crystal [110] direction are formed on passivated GaAs(001) surface. The presence of strong anisotropy and orientation of Au clusters on passivated GaAs surfaces is established by the methods of probe diagnostics and of optical reflectance anisotropy spectroscopy and polarized reflection spectroscopy. Using an optical model of plasmonic polarizability of elongated Au spheroids, it is shown that the spectral features observed in polarized reflection originate from anisotropic plasmons of Au nanoclusters polarized mainly in direction [110] of crystal. Keywords: semiconductor surface, nitride passivation, gold nanoclusters, anisotropic plasmons, polarized reflectance.
- R.M. Charatan, R.S. Williams. J. Appl. Phys., 72, 5226 (1992)
- V.L. Berkovits, V.A. Kosobukin, V.P. Ulin, F.Yu. Soldatenkov, I.V. Makarenko, V.S. Levitskii, A.V. Nashchekin, P.A. Alekseev. Appl. Surf. Sci., 507, 144982 (2020)
- V.L. Berkovits, V.A. Kosobukin, V.P. Ulin, P.A. Alekseev, F.Yu. Soldatenkov, V.S. Levitskii. Phys. Status Solidi B, 259, 2100394 (2022)
- V.L. Berkovits, V.A. Kosobukin, V.P. Ulin, P.A. Alekseev, F.Yu. Soldatenkov, V.A. Levitskii. FTP, 56 (4), 446 (2022)
- G.P. Schwartz, J.E. Griffits, D. Distefano, G.L. Gualtieri, B. Schwartz. Appl. Phys. Lett., 34, 742 (1972)
- R.L. Streever, J.L. Breslin, E.H. Ahlstrom. Solid State Electron., 23, 863 (1980)
- C.R. Zeisse, L.J. Messick, D.L. Lile. J. Vac. Sci. Technol., 14, 957 (1977)
- V.R. Romanyuk, O.S. Kondratenko, S.V. Kondratenko, A.V. Kotko, N.L. Dmitruk. Eur. Phys. J. Appl. Phys., 56, 10302 (2011)
- M.J. Rost, D.A. Quist, J.W.M. Frenken. Phys. Rev. Lett., 91, 026101 (2003)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.