The influence of the waveguide layer composition on the emission parameters of 1550 nm InGaAs/InP laser heterostructures
NovikovI.I.1, Nyapshaev I.A.1, Gladyshev A. G.1, Andryushkin V. V.1, Babichev A. V.1, Karachinsky L. Ya.1, Shernyakov Yu. M. 2, Denisov D.V.3,4, Kryzhanovskaya N. V.5, Zhukov A.E.5, Egorov A.Yu.6
1 ITMO University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3Connector Optics LLC, St. Petersburg, Russia
4St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
5High School of Economics, St. Petersburg, Russia
6Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
Email: Novikov@switch.ioffe.ru

PDF
The influence of InGaAlAs waveguide composition on the photoluminescence and electroluminescence of 1550 nm spectral range heterostructures based on thin strained In0.74Ga0.26As quantum wells has been studied. An approach is proposed that allows based on the analysis of electroluminescence to carry out a comparative analysis of the deferential gain in fabricated laser diodes. It is shown that decrease of the molar fraction of aluminum in waveguide InGaAlAs layers matched in lattice constant with InP leads to falling of integrated photoluminescence intensity, however, laser diodes with In0.53Ga0.31Al0.16As waveguide layers demonstrate a higher differential gain compared to laser diodes with In0.53Ga0.27Al0.20As waveguide. Keywords: quantum well, molecular-beam epitaxy, photoluminescence, electroluminescence.
  1. H.R. Ibrahim, M. Ahmed, F. Koyama. High speed modulation single mode 850 nm DTCC-VCSEL. In: 24th Microoptics Conf. (MOC), Nov. 2019
  2. N. Ledentsov, . Chorchos, O.Y. Makarov, V.A. Shchukin, V.P. Kalosha, J.-R. Kropp, J.P. Turkiewicz, C. Kottke, V. Jungnickel, R. Freund, N.N. Ledentsov. Electron. Lett., 57 (19), 735 (2021)
  3. D. Bimberg. Green Nanophotonics for Future Datacom and Ethernet Networks. In: Asia Communications and Photonics Conf. 2013 (2013)
  4. S. Spiga, D. Schoke, A. Andrejew, G. Boehm, M.-C. Amann. J. Light. Technol., 35 (15), 3130 (2017)
  5. D. Ellafi, V. Iakovlev, A. Sirbu, G. Suruceanu, Z. Mickovic, A. Caliman, A. Mereuta, E. Kapon. Opt. Express, 22 (26), 32180 (2014)
  6. A.V. Babichev, L.Y. Karachinsky, I.I. Novikov, A.G. Gladyshev, S.A. Blokhin, S. Mikhailov, V. Iakovlev, A. Sirbu, G. Stepniak, L. Chorchos, J.P. Turkiewicz, K.O. Voropaev, A.S. Ionov, M. Agustin, N.N. Ledentsov, A.Y. Egorov. IEEE J. Quant. Electron., 53 (6), 1 (2017)
  7. M. Ortsiefer, W. Hofmann, J. Rosskopf, M.C. Amann. Long-wavelength VCSELs with buried tunnel junction. In: VCSELs (Springer, Berlin--Heidelberg, 2013) p. 321
  8. H.-T. Cheng, Y.-C. Yang, T.-H. Liu, C.-H. Wu. Photonics, 9 (2), 107 (2022)
  9. G. Steinle, H. Riechert, A.Y. Egorov. Electron. Lett., 37 (2), 93 (2001)
  10. I.I. Novikov, N.Y. Gordeev, M.V. Maximov, Y.M. Shernyakov, A.E. Zhukov, A.P. Vasil'ev, E.S. Semenova, V.M. Ustinov, N.N. Ledentsov, D. Bimberg, N.D. Zakharov, P. Werner. Semicond. Sci. Technol., 20 (1), 33 (2004)
  11. M. Gebski, D. Dontsova, N. Haghighi, K. Nunna, R. Yanka, A. Johnson, R. Pelzel, J.A. Lott. OSA Contin., 3 (7), 1952 (2020)
  12. S.A. Blokhin, M.A. Bobrov, A.A. Blokhin, A.G. Kuzmenkov, N.A. Maleev, V.M. Ustinov, E.S. Kolodeznyi, S.S. Rochas, A.V. Babichev, I.I. Novikov, A.G. Gladyshev, L.Y. Karachinsky, D.V. Denisov, K.O. Voropaev, A.S. Ionov, A.Y. Egorov. Semiconductors, 53 (8), 1104 (2019)
  13. A. Sirbu, G. Suruceanu, V. Iakovlev, A. Mereuta, Z. Mickovic, A. Caliman, E. Kapon. IEEE Photonics Technol. Lett., 25 (16), 1555 (2013)
  14. E.S. Kolodeznyi, A.S. Kurochkin, S.S. Rochas, A.V. Babichev, I.I. Novikov, A.G. Gladyshev, L.Ya. Karachinsky, A.V. Savelyev, A.Yu. Egorov, D.V. Denisov. Semiconductors, 52 (9), 1156 (2018)
  15. M.V. Maksimov, Yu.M. Shernyakov, F.I. Zubov, I.I. Novikov, A.G. Gladyshev, L.Ya. Karachinsky, D.V. Denisov, S.S. Rochas, E.S. Kolodeznyi, A.Yu. Egorov, A.E. Zhukov. Tech. Phys. Lett., 45 (6), 549 (2019)
  16. S. Karpov. Opt. Quant. Electron., 47 (6), 1293 (2015)
  17. K.R. Poguntke, A.R. Adams. Electron. Lett.,1 (28), 41 (1992)
  18. L.A. Coldren, S.W. Corzine. Diode lasers and photonic integrated circuits, ser. Wiley series in microwave and optical engineering (Wiley, N. Y., USA, 1995) p. 73
  19. L.V. Asryan. Quantum Electron., 35 (12), 1117--1120 (2005)
  20. A.S. Polkovnikov, G.G. Zegrya. PRB, 58 (7), 4039 (1998)
  21. A.E. Zhukov. Osnovy fiziki i tekhnologii poluprovodnikovykh lazerov (S.-Peterb., Izd. Akad. Univ., 2016) (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru