Thermoelectric Properties of Ag8Ge1-xMnxTe6 Solid Solutions
Rahimov R. N. 1, Qahramanova A. S. 1, Arasly D. H. 1, Khalilova A. A. 1, Mammadov I. Kh. 2, Khalilzade A. R. 3
1Institute of Physics, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan
2Azerbaijan State Aviation Academy, Baku, Azerbaijan
3University of Waterloo, Waterloo, Canada
Email: rashad@physics.sciences.az, qahramanova2013@mail.ru, durdana@physics.science.az, almaz@physics.science.az, imamaedov10@mail.ru, anar.khalilzade@gmail.com

PDF
Ag8Ge1-xMnxTe6 solid solutions with different manganese content (x=0, 0.05, 0.1, 0.2) were prepared by alloying and further pressing the powders under a pressure of 0.6 GPa. By the X-ray diffraction studies have shown that the introduction of manganese atoms leads to the compressibility of the Ag8GeTe6 lattice. All p-type samples had high resistance below the transition at temperatures of 180-220 K. An increase in electrical conductivity in the range of 220-300 K was analyzed using the Mott ratio; at temperatures T>320 K, semiconductor behavior is observed in all compositions. The highest thermoelectric figure of merit ZT=0.7 at 550 K was obtained for a solid solution of the composition Ag8Ge1-xMnxTe6 (x=0.05). Keywords: solid solution, Ag8Ge1-xMnxTe6, thermoelectric efficiency, amorphization, low thermal conductivity
  1. D.M. Rowe (ed.). CRC Handbook of Thermoelectrics (CRC Press, N.Y., 1995)
  2. G. Jeffrey Snyder. Nature Mater., 7 (2), 105 (2008)
  3. M.S. Whittingham. MRS Bulletin, 14,31 (1989)
  4. F. Boucher, M. Evain, R. Brec. J. Solid State Chem., 107, 332 (1993)
  5. R. Bendorius, A. Irzikevicius, A. Kindurys, E.V. Tsvetkova. Phys. Status Solidi A, 28, K125 (1975)
  6. N. Rysanek, P. Laruelle, A. Katty. Acta Crystallogr., B32, 692 (1976)
  7. S. Geller. Zeitschrift. Kristallogr., 149, 31 (1979)
  8. H. Kawaji, T. Atake. Solid State Ionics, 70/71, 518 (1994)
  9. M. Fujikane,K. Kurosaki,H. Muta, S. Yamanaka. J. Alloys Compd., 396 (1), 280 (2005)
  10. A. Charoenphakdee, K. Kurosaki, H. Muta, M. Uno, S.Yamanaka. Phys. Status Solidi RRL, 2, 65 (2008)
  11. T.J. Zhu, S.N. Zhang, S.H. Yang, X.B. Zhao. Phys. Status Solidi RRL, 4, 317 (2010)
  12. W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott. J. Appl. Phys., 32 (9), 1679 (1961)
  13. Aynur Gahramanova, Vagif Qasymov, Almaz Khalilova, Rashad Rahinov. Proc. 7th Rostocker Int. Conf.: Thermophysical Properties for Technical Thermodynamics" (Rostock, Germany 2018) p. 73
  14. Y. Xu, W. Li, C. Wang, Z. Chen, Y. Wu, X. Zhang, J. Li, S. Lin, Y. Chen, Y. Pei. J. Materiomics, 4, 215 (2018)
  15. N.F. Mott. J. Non-Cryst. Solids, 1, 1 (1968)
  16. N.F. Mott. Phil. Mag., 19, 835 (1969)
  17. M.P. Fateev. Phys. Solid State, 52 (6), 1123 (2010)
  18. S.S. Ragimov, A.A. Saddinova, A.I. Alieva, R.I. Selim-zade. Inorg. Mater., 56 (8), 779 (2020)
  19. I.A Smirnov, V.I. Tamarchenko. Elektronnaya teploprovodnost' v metallakh i poluprovodnikakh (L., Nauka, 1977) (in Russian)
  20. G.A. Slack, D.W. Oliver, F.H. Horn. Phys. Rev. B, 4, 1714 (1971).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru