Distribution of charge carrier concentrations in epitaxial Ge and GeSn layers grown on n+-Si(001) substrates
Titova A. M.1, Denisov S. A. 1, Chalkov V. Yu. 1, Alyabina N. A. 1, Zdoroveishchev A. V. 1, Shengurov V. G. 1
1Lobachevsky State University, Nizhny Novgorod, Russia
Email: asya_titova95@mail.ru

PDF
Heteroepitaxial Ge or Ge1-xSnx layers were grown by hot-wire chemical vapor deposition on Si(001) substrates doped heavily with a donor (As or Sb) impurity. The same layers were also grown on high-resistance Si(001) substrates for comparison. The depth profiles of carrier concentration were measured in both types of layers using the capacitance-voltage method, and carrier mobilities were measured additionally by the Hall effect method in layers on high-resistance silicon. It was found that the layers grown on high-resistance substrates were p-type, while the layers grown in the same regimes on heavily doped substrates were n-type with electron concentration n=(4-9)·1016 cm-3 in Ge layers and n=(2-4)·1017 cm-3 in GeSn layers. It was established experimentally and theoretically that the effect of autodoping of Ge and GeSn layers is lacking in the hot-wire chemical vapor deposition method. In our view, the growth of n-type Ge and GeSn layers on n+-Si(001) substrates doped heavily with a donor (As or Sb) impurity is associated with the segregation of this impurity in the process of growth of a buffer Si layer and its subsequent incorporation into growing Ge or GeSn layers. Keywords: epitaxy, doping, Ge, Si, Sn, concentration.
  1. J. Wang, S. Lee. Sensors, 11, 696 (2011)
  2. M.J. Archer, D.C. Law, S. Mesropian, M. Haddad, C.M. Fetzer, A.C. Ackerman, C. Ladous, R.R. King, H.A. Atwater. Appl. Phys. Lett., 92, 103503 (2008)
  3. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, J. Michel. Optics Lett., 35 (5), 679 (2010)
  4. P.S. Goley, M.K. Hudait. Challenges and Opportunities Mater., 7, 2301 (2014)
  5. W.I. Wang. Appl. Phys. Lett., 44, 1149 (1984)
  6. S. Zaima, O. Nakatsuka, N. Taoka, M. Kurosawa, W. Takeuchi, M. Sakashita. Sci. Technol. Adv. Mater., 16, 043502 (2015)
  7. X. Wang, A. C. Covian, L. Je, S. Fu, H. Li, J. Piao, J. Liu. Frontiers Phys., 7, 134 (2019)
  8. B. Claflin, G. J. Grzybowski, M. E. Ware, S. Zollner, A.M. Kiefer. Frontiers Mater., 7, 44 (2020)
  9. D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. Driesch, G. Mussler, T. Zabel, T. Stoica, J. Hartmann, S. Mantl, Z. Ikonic, D. Grutzmacher, H. Sigg, J. Witzens, D. Buca. ACS Photonics, 3, 1279 (2016)
  10. Yu.G. Sadofyev, V.P. Martovitsky, M.A. Bazalevsky, A.V. Klekovkin, D.V. Averyanov, I.S. Vasil'evskii. Semiconductors, 49 (1), 128 (2015)
  11. V. Timofeev, V. Mashanov, A. Nikiforov, A. Gutakovskii, T. Gavrilova, I. Skvortsov, D. Gulyaev, D. Firsov, O. Komkov. Appl. Sur. Sci., 553, 149572 (2021)
  12. A.R. Tuktamyshev, V.I. Mashanov, V.A.Timofeev, A.I. Nikiforov, S.A. Teys. Semiconductors, 49 (12), 1630 (2015)
  13. C.L. Senaratne, J.D. Gallagher, L. Jiang, T. Aoki, D.J. Smith, J. Menendez, J. Kouvetakis. Appl.Phys., 116, 133509 (2014)
  14. J. Thiesen, E. Iwaniczko, K.M. Jones, A. Mahan, R. Crandall. Appl. Phys. Lett., 75, 992 (1999)
  15. C. Mukherjee, H. Seitz, B. Schruder. Appl., Phys. Lett., 22, 3457 (2001)
  16. V.G. Shengurov, V.Yu. Chalkov, S.A. Denisov, N.A. Alyabina, D.V. Guseinov, V.N. Trushin, A.P. Gorshkov, N.S. Volkova, M.M. Ivanova, A.V. Kruglov, D.O. Filatov. Semiconductors, 49 1411 (2015)
  17. Y. Buzynin, V. Shengurov, B. Zvonkov, A. Buzynin, S. Denisov, N. Baidus, M. Drozdov, D. Pavlov, P. Yunin. AIP Advances, 7, 015304 (2017)
  18. V. Shengurov, S. Denisov, V. Chalkov, V. Trushin, A. Zaitsev, D. Prokhorov, D. Filatov, A. Zdoroveishchev, M. Ved, A. Kudrin, M. Dorokhin, Y. Buzynin. Mater. Sci. Semicond. Process., 100, 175 (2019)
  19. V.G. Shengurov, S.A. Denisov, V.Yu. Chalkov, D.O. Filatov, A.V. Kudrin, S.M. Sychyov, V.N. Trushin, A.V. Zaitsev, A.M. Titova, N.A. Alyabina. Mater. Sci. Eng. B, 259, 114579 (2020)
  20. V.G. Shengurov, V.Y. Chalkov, S.A. Denisov, V.N. Trushin, A.V. Zaitsev, A.V. Nezhdanov, D.A. Pavlov, D.O. Filatov. J. Cryst. Growth, 578, 126421 (2022)
  21. W. Rice. Proc. IEEE, 52 (3), 284 (1964)
  22. V.A. Uskov, S.P. Svetlov. Sov. Phys. J., 7, 145 (1972)
  23. B.I. Boltaks. Diffuziya i tochechnye defekty v poluprovodnikakh (L., Nauka, 1975) p. 384 (in Russian)
  24. J.C. Bean. Appl. Phys. Lett., 33, 654 (1978)
  25. A.I. Nikiforov, B.Z. Kanter, S.I. Stenin. Elektron. Prom-st., No. 6, 3 (1989) (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru