1550 nm range high-speed single-mode vertical-cavity surface-emitting lasers
Blokhin S.A. 1, Babichev A. V. 2, Karachinsky L. Ya. 2, Novikov I. I. 2, Blokhin A. A. 1, Bobrov M. A. 1, Kuzmenkov A. G. 1, Maleev N. A. 1, Andryushkin V.V. 2, Bougrov V.E. 2, Gladyshev A. G. 3, Denisov D. V. 4, Voropaev K. O.5, Zhumaeva I.O. 5, Ustinov V. M. 6, Li H.7, Tian S.С.8,9, Han S.Y.8,9, Sapunov G.A. 8,9, Egorov А. Yu. 3,10, Bimberg D.8,9
1Ioffe Institute, St. Petersburg, Russia
2 ITMO University, St. Petersburg, Russia
3Connector Optics LLC, St. Petersburg, Russia
4St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
5OAO OKB-Planeta, Veliky Novgorod, Russia
6Submicron Heterostructures for Microelectronics, Research and Engineering Center, Russian Academy of Sciences, St. Petersburg, Russia
7College of Mathematical and Physical Sciences, Qingdao University of Science and Technology, Qingdao, China
8Bimberg Chinese-German Center for Green Photonics, Changchun Institute of Optics, Fine Mechanics and Physics
9Center of Nanophotonics, Institute of Solid State Physics, Technische Universitat Berlin, Berlin, Germany
10Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
Email: blokh@mail.ioffe.ru, a.babichev@mail.ioffe.ru, leonid.karachinsky@connector-optics.com, Innokenty.Novikov@connector-optics.com, bloalex91@yandex.ru, bobrov.mikh@gmail.com, kuzmenkov@mail.ioffe.ru, Maleev@beam.ioffe.ru, vvandriushkin@itmo.ru, vladislav.bougrov@niuitmo.ru, andrey.gladyshev@connector-optics.com, dmitry.denisov@connector-optics.com, voropaevko@okbplaneta.ru, ZhumaevaIO@okbplaneta.ru, vmust@beam.ioffe.ru, lilinlu88@163.com, tiansicong@ciomp.ac.cn, hansaiyi@163.com, sapunovgeorgiy@gmail.com, anton@beam.ioffe.ru, bimberg@physik.tu-berlin.de

PDF
The results of complex studies of static and dynamic performance of 1550 nm-range VCSELs, which were created by direct bonding (wafer fusion technique) InAlGaAs/InP optical cavity wafers with AlGaAs/GaAs distributed Bragg reflector wafers grown by molecular beam epitaxy, are presented. The VCSELs with a buried tunnel junction diameter less than 7 μm demonstrated a single-mode lasing with a side-mode suppression ratio more than 40 dB; however, at diameters less than 5 μm, a sharp increase in the threshold current is observed. It is associated to the appearance of a saturable absorber due to penetration of optical mode into the non-pumped regions of the active region. The maximum single-mode output optical power and the -3 dB modulation bandwidth reached 4.5 mW and 8 GHz, respectively, at 20oC. The maximum data rate at 20oC under non-return-to-zero on-off keying modulation was 23 Gb/s for a short-reach link based on single-mode fiber SMF-28. As the length of the optical link increased up to 2000 m, the maximum data rate dropped to 18 Gbit/s. The main factors affecting the high-speed operation and data transmission range are defined and discussed, and the further ways to overcome themit are proposed. Keywords: VCSEL, wafer fusion, molecular beam epitaxy, single-mode operation, high-speed performance.
  1. VCSEL Industry: Communication and Sensing, The ComSoc Guides to Communications Technologies, ed. by B.D. Padullaparthi, J. Tatum, K. Iga (Wiley-IEEE Press, Piscataway, N. J., USA, 2022). ISBN: 978-1-119-78221-6
  2. L. Zhang, J. Chen, E. Agrell, R. Lin, L. Wosinska. J. Lightwave Technol., 38 (1), 18 (2020). DOI: 10.1109/JLT.2019.2941765
  3. A. Larsson, P. Westbergh, J.S. Gustavsson, E. Haglund, E.P. Haglund. In: Proc. SPIE OPTO (San Francisco, CA, USA, Mar. 2015) v. 9381, p. 93810D-1. DOI: 10.1117/12.2082614
  4. L. Zhang, J. Van Kerrebrouck, R. Lin, X. Pang, A. Udalcovs, O. Ozolins, S. Spiga, M.-C. Amann, G. Van Steenberge, L. Gan, M. Tang, S. Fu, R. Schatz, S. Popov, D. Liu, W. Tong, S. Xiao, G. Torfs, J. Chen, J. Bauwelinck, X. Yin. J. Lightwave Technol., 37 (2), 380 (2019). DOI: 10.1109/JLT.2018.2851746
  5. M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, B.-S. Yoo. IEEE Phot. Technol. Lett., 18 (16), 1717 (2006). DOI: 10.1109/LPT.2006.879940
  6. W. Hofmann, M. Muller, A. Nadtochiy, C. Meltzer, A. Mutig, G. Bohm, J. Rosskopf, D. Bimberg, M.-C. Amann, C. Chang-Hasnain. Opt. Express, 17 (20), 17547 (2009). DOI: 10.1364/OE.17.017547
  7. W. Hofmann. IEEE Photonics J., 2 (5), 802 (2010). DOI: 10.1109/JPHOT.2010.2055554
  8. S. Spiga, W. Soenen, A. Andrejew, D.M. Schoke, X. Yin, J. Bauwelinck, G. Boehm, M.-C. Amann. J. Lightwave Technol., 35 (4), 727 (2017). DOI: 10.1109/JLT.2016.2597870
  9. S. Spiga, D. Schoke, A. Andrejew, G. Boehm, M.-C. Amann. J. Lightwave Technol., 35 (15), 3130 (2017). DOI: 10.1109/jlt.2017.2660444
  10. A. Caliman, A. Mereuta, G. Suruceanu, V. Iakovlev, A. Sirbu, E. Kapon. Opt. Express, 19 (18), 16996 (2011). DOI: 10.1364/OE.19.016996
  11. A.V. Babichev, L.Y. Karachinsky, I.I. Novikov, A.G. Gladyshev, S.A. Blokhin, S. Mikhailov, V. Iakovlev, A. Sirbu, G. Stepniak, L. Chorchos, J.P. Turkiewicz, K.O. Voropaev, A.S. Ionov, M. Agustin, N.N. Ledentsov, A.Y. Egorov. IEEE J. Quant. Electron., 53 (6), 1 (2017). DOI: 10.1109/JQE.2017.2752700
  12. T. Grundl, P. Debernardi, M. Muller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, M.-C. Amann. IEEE J. Select. Top. Quant. Electron., 19 (4), 1700913. DOI: 10.1109/JSTQE.2013.2244572
  13. A. Sirbu, G. Suruceanu, V. Iakovlev, A. Mereuta, Z. Mickovic, A. Caliman, E. Kapon. IEEE Phot. Technol. Lett., 25 (16), 1555 (2013). DOI: 10.1109/LPT.2013.2271041
  14. D. Ellafi, V. Iakovlev, A. Sirbu, G. Suruceanu, Z. Mickovic, A. Caliman, A. Mereuta, E. Kapon. Opt. Express, 22 (26), 32180 (2014). DOI: 10.1364/OE.22.032180
  15. E.S. Kolodeznyi, S.S. Rochas, A.S. Kurochkin, A.V. Babichev, I.I. Novikov, A.G. Gladyshev, L.Ya. Karachinskii, D.V. Denisov, Yu.K. Bobretsova, A.A. Klimov, S.A. Blokhin, K.O. Voropaev, A.S. Ionov. Opt. Spectr., 125, 238 (2018). DOI: 10.1134/S0030400X18080143
  16. C.A. Wang, B. Schwarz, D.F. Siriani, L.J. Missaggia, M.K. Connors, T.S. Mansuripur, D.R. Calawa, D. Mc Nulty, M. Nickerson, J.P. Donnelly, K. Creedon, F. Capasso. IEEE J. Select. Top. Quant. Electron., 23 (6), Art no. 1200413 (2017). DOI: 10.1109/JSTQE.2017.2677899
  17. S.A. Blokhin, M.A. Bobrov, N.A. Maleev, A.A. Blokhin, A.G. Kuz'menkov, A.P. Vasil'ev, S.S. Rochas, A.G. Gladyshev, A.V. Babichev, I.I. Novikov, L.Ya. Karachinsky, D.V. Denisov, K.O. Voropaev, A.S. Ionov, A.Yu. Egorov, V.M. Ustinov. Techn. Phys. Lett., 46 (17), 854 (2020). DOI: 10.1134/S1063785020090023
  18. S.A. Blokhin, A.V. Babichev, A.G. Gladyshev, L.Ya. Karachinsky, I.I. Novikov, A.A. Blokhin, S.S. Rochas, D.V. Denisov, K.O. Voropaev, A.S. Ionov, N.N. Ledentsov, A.Yu. Egorov. Electron. Lett., 57 (18), 697 (2021). DOI: 10.1049/ell2.12232
  19. S.A. Blokhin, A.V. Babichev, A.G. Gladyshev, L.Ya. Karachinsky, I.I. Novikov, A.A. Blokhin, M.A. Bobrov, N.A. Maleev, V.V. Andryushkin, D.V. Denisov, K.O. Voropaev, I.O. Zhumaeva, V.M. Ustinov, A.Yu. Egorov, N.N. Ledentsov. IEEE J. Quant. Electron., 58 (2), Art N 2400115 (2022). DOI: 10.1109/JQE.2022.3141418
  20. S.A. Blokhin, V.N. Nevedomsky, M.A. Bobrov, N.A. Maleev, A.A. Blokhin, A.G. Kuzmenkov, A.P. Vasyl'ev, S.S. Rohas, A.V. Babichev, A.G. Gladyshev, I.I. Novikov, L.Ya. Karachinsky, D.V. Denisov, K.O. Voropaev, A.S. Ionov, A.Yu. Egorov, V.M. Ustinov. Semiconductors, 54 (10), 1276 (2020). DOI: 10.1134/S1063782620100048
  21. M. Ortsiefer, R. Shau, G. Bohm, F. Kohler. M.-C. Amann. Appl. Phys. Lett., 76 (16), 2179 (2000). DOI: 10.1063/1.126290
  22. S.A. Blokhin, M.A. Bobrov, A.A. Blokhin, N.A. Maleev, A.G. Kuz'menkov, A.P. Vasil'ev, S.S. Rochas, A.V. Babichev, I.I. Novikov, L.Ya. Karachinskiy, A.G. Gladyshev, D.V. Denisov, K.O. Voropaev, A.Yu. Egorov, V.M. Ustinov. Pis'ma ZhTF, 47 (22), 3 (2021) (in Russian)
  23. K.O. Voropaev, B.I. Seleznev, A.Yu. Prokhorov, A.S. Ionov, S.A. Blokhin. J. Phys.: Conf. Ser., 1658, 012069 (2020). DOI: 10.1088/1742-6596/1658/1/012069
  24. J. Bengtsson, J. Gustavsson, Angstrem. Haglund, A. Larsson, A. Bachmann, K. Kashani-Shirazi, V.-C. Amann. Opt. Express, 16 (25), 20789 (2008). DOI: 10.1364/OE.16.020789
  25. S.A. Blokhin, M.A. Bobrov, A.A. Blokhin, A.G. Kuz'menkov, A.P. Vasil'ev, N.A. Maleev, S.S. Rochas, A.G. Gladyshev, A.V. Babichev, I.I. Novikov, L.Ya. Karachinskiy, D.V. Denisov, K.O. Voropaev, A.S. Ionov, A.Yu. Egorov, V.M. Ustinov. Pis'ma ZhTF, 46 (24), 49 (2020) (in Russian)
  26. V.V. Lysak, K.S. Chang, Y.T. Lee. Appl. Phys. Lett., 87 (23), Art. N 231118 (2003). DOI: 10.1063/1.2140886
  27. VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers. Springer Series in Optical Sciences, ed. by R. Michalzik (Springer, Berlin-Heidelberg, 2013). DOI: 10.1007/978-3-642-24986-0

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru