First principles study of the structural, electronic, optical and thermal properties of chalcopyrite semiconductor LiAlTe2
Benkhedim H.1,2, Meradji H.1, Ghemid S.1, Bouasla A.2, Boumaza A.1, Bendjeddou H.1, Chouahda Z.1, Khenata R.3
1Laboratoire LPR, Département de Physique, Faculté des Sciences, Université Badji Mokhtar, Annaba, Algeria
2Laboratoire des Semi-conducteurs, Departement de Physique, Faculte des Sciences, Universite Badji Mokhtar, Annaba, Algeria
3Laboratoire de Physique Quantique de la Mati`ere et de la Modelisation Mathematique (LPQ3M), Universite de Mascara, Mascara, Algeria

The structural, electronic, optical and thermal properties of chalcopyrite LiAlTe2 are studied using the full potential linearized augmented plane wave (FP-LAPW) method framed within density functional theory (DFT). The Wu-Cohen generalized gradient approximation (WC-GGA) was used as exchange-correlation potential to calculate the structural properties. Furthermore, the Tran and Blaha modified Becke-Johnson (mBJ) functional was also employed to compute the electronic and optical properties in order to get best values. The structural parameters at equilibrium are in good agreement with previous experimental and theoretical calculations. The band structures and density of states are calculated and it is found that LiAlTe2 compound is a direct band gap (-) semiconductor. In addition, the optical properties such as dielectric function, refractive index, reflectivity and absorption coefficient are calculated for photon energies up to 25 eV. This study on the optical properties has also been enriched by the introduction of the analysis of birefringence and anisotropy for this material. The calculated values of all parameters are compared with the available theoretical data where a reasonable agreement has been obtained. The study of the material properties at high temperatures and pressures is very important to understand the behavior of a material in severe conditions, so the temperature and pressure dependencies of unit cell volume, bulk modulus, Debye temperature and specific heat capacities are obtained at different temperatures (0-1000 K) and pressures (0-8 GPa) using the quasi-harmonic Debye model. To our knowledge this is the first theoretical prediction of the thermal properties for LiAlTe2 compound and still awaits experimental confirmations. We have included the spin-orbit interaction (SOI) in our calculations which is known to have significant influence on the electronic and optical properties when heavy elements are present. A weak effect is observed for the studied compound. Keywords: DFT, Wien2k, Chalcopyrite, band gap, dielectric function, thermal properties.
  1. B.H. Bairamov, A. Aydinli, I.V. Bodnar, Y.V. Rud, V.K. Nogoduyko, and V.V. Toporov, J. Appl. Phys. 80, 5564 (1996)
  2. H.S. Saini, M. Singh, A.H. Reshak, and M.K. Kashyap, J. Alloys Compd. 518, 74 (2012)
  3. S. Ullah, G. Murtaza, R. Khenata, and A.H. Reshak, Mat. Sci. Semicon. Proc. 26, 79 (2014)
  4. V.L. Shaposhnikov, A.V. Krivosheeva, V.E. Borisenko, J.-L. Lazzari, and F. Arnaud d'Avitaya, Phys. Rev. B 85, 205201 (2012)
  5. J.Y. Kim, and T. Hughbanks, Inorg. Chem. 39, 3092 (2000)
  6. Y.E. Romanyuk, L.P. Marushko, L.V. Piskach, I.V. Kityk, A.O. Fedorchuk, V.I. Pekhnyo, and O.V. Parasyuk, Cryst. Eng. Commun. 15, 4838 (2013)
  7. G.P. Gorgut, A.O. Fedorchuk, I.V. Kityk, V.P. Sachanyuk, I.D. Olekseyuk, and O.V. Parasyuk, J. Cryst. Growth 324, 212 (2011)
  8. Amjad Khan, M. Sajjad, G. Murtaza, and A. Laref, Z. Naturforsch, 1 (2018)
  9. L.L. Kazmerski, Il. Nuovo Cimento D 2, 2013 (1983)
  10. S. Ozaki, and S. Adachi, J. Appl. Phys. 100, 113526 (2006)
  11. I.G. Vasilyeva, R.E. Nikolaev, P.G. Krinitsin, and L.I. Isaenko, J. Phys. Chem. C 121, 17429 (2017)
  12. F.K. Hopkins, Laser Focus World 31, 87 (1995)
  13. A.V. Kosobutsky, Yu.M. Basalaev, and A.S. Poplavnoi, Phys. Status Solidi B 246, 364 (2009)
  14. A.V. Kosobutsky, and Yu.M. Basalaev J. Phys. Chem. Solids. 71, 854 (2010)
  15. A.H. Reshak, and Wilayat Khan, J. Alloys Compd.592, 92 (2014)
  16. L. Isaenko, P. Krinitsin, V. Vedenyapin, A. Yelisseyev, A. Merkulov, J.-J. Zondy, and V. Petrov, Cryst. Growth Des. 5, 1325 (2005)
  17. V. Petrov, L. Isaenko, A. Yelisseyev, P. Krinitsin, V. Vedenyapin, A. Merkulov, and J.-J. Zondy, J. Non-Cryst. Solids 352, 2434 (2006)
  18. O.K. Andersen. Phys. Rev. B 42, 3063(1975)
  19. P. Hohenberg, and W. Kohn, Phys. Rev. B 136, 864 (1964)
  20. W. Kohn, and L.J. Sham, Phys. Rev. 140, A1133 (1965)
  21. P. Blaha, K. Schwarz, G. K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k. An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties Vienna University of Technology, (Vienna, Austria, 2001)
  22. Z. Wu, and R.E. Cohen, Phys. Rev. B 73, 235116 (2006)
  23. F. Tran, and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)
  24. A.D. Becke, and E.R. Johnson, J. Chem. Phys. 124, 221101 (2006)
  25. H.J. Monkhorst, and J.D. Pack, Phys. Rev. B 13, 5188 (1976)
  26. F.D. Murnaghan. Proc. Natl. Acad. Sci. USA 30, 244 (1947)
  27. L. Isaenko, I. Vasilyeva, A. Merkulov, A. Yelisseyev, and S. Lobanov, J. Cryst. Growth 275, 217 (2005)
  28. D.J. Singh. Phys. Rev. B 82, 155145 (2010)
  29. D.J. Singh. Phys. Rev. B 82, 205102 (2010)
  30. M. Gajdovs, K. Hummer, G. Kresse, J. Furthmuller, and F. Bechstedt, Phys. Rev. B 73, 045112 (2006)
  31. R. de L. Kronig. J. Opt. Soc. Am. B 12, 547 (1926)
  32. J. Sun, H. Wang, J. He, and Y. Tian, Phys. Rev. B 71, 125132 (2005)
  33. S. Ozaki, and S. Adachi, J. Appl. Phys. 75, 7470 (1994)
  34. D.R. Penn. Phys. Rev. 128, 2093 (1962)
  35. N. Seddiki, T. Ouahrani, L. Boumediene, T. Benouaz, A.H. Reshak, and B. Bouhafs, Mat. Sci. Semicon. Proc. 16, 1454 (2013)
  36. M.A. Blanco, E. Francisco, and V. Luana, Comput. Phys. Commun. 158, 57 (2004)
  37. M.A. Blanco, A. Martin Pend\`as, E. Francisco, J.M. Recio, and R. Franco, J. Mol. Struct. Theochem 368, 245 (1996)
  38. M. Florez, J.M. Recio, E. Francisco, M.A. Blanco, and A. Mart\`in Pend\`as, Phys. Rev. B 66, 144112 (2002)
  39. E. Francisco, M.A. Blanco, and G. Sanjurjo, Phys. Rev. B 63, 094107 (2001)
  40. J.P. Poirier. Introduction to the Physics of the Earth's Interior, Cambridge University Press, Oxford 39
  41. V. Kanchana, G. Vaitheeswaran, A. Svane, and A. Delin, J. Phys.: Condens. Matter 18, 9615 (2006)
  42. P. Debye. Ann. Phys. 344, 789 (1912)
  43. A.T. Petit, and P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245