Multi-section thermoelements, advantages and problems of their creation
Shtern M.Yu. 1
1National Research University of Electronic Technology, Zelenograd, Moscow, Russia

In this work, the ways of increasing the efficiency of thermoelectric generators are considered. These include an increase in the figure of merit of thermoelectric materials, as well as an increase in the temperature difference between hot and cold junctions of thermoelements and, accordingly, the range of their operating temperatures. The expediency of using thermoelements with multi-section legs has been substantiated. For their creation, effective thermoelectric materials with operating temperatures in the range of 300-1200 K have been proposed. A technique for modeling such thermoelements has been developed. Structures and materials of effective contact systems for multi-section thermoelements have been proposed, a technology for their manufacture has been developed. Ways of switching sections in thermoelement legs are considered. The thermal expansion of thermoelectric materials is investigated and a method for damping thermal stresses in the design of a thermoelement is proposed. The problem of thermoelectric material sublimation at high temperatures was solved by using protective coatings. Key words: thermoelectric generators, multi-section thermoelements, thermoelectric materials, thermal and electrophysical properties, contact systems, protecting coatings.
  1. D. Zhao, G. Tan. Appl. Therm. Eng., 66, 15 (2014)
  2. M. Shtern, M. Rogachev, Y. Shtern, A. Kozlov, A. Sherchenkov, E. Korchagin. In: Proc. 2021 International Seminar on Electron Devices Design and Production (Prague, Czech Republic, 2021) p. 9444502
  3. A. Martinez, S. Diaz de Garayo, P. Aranguren, M. Araiz. Energy Convers. Manag., 2351, 113992 (2021)
  4. Z. Soleimani, S. Zoras, B. Ceranic, S. Shahzad, Y. Cui. Energy Tech- nol. Assess, 37, 100604 (2020)
  5. N. Jaziri, A. Boughamoura, J. Muller, B. Mezghani, F. Tounsi, M. Is- mail. Energy Rep., 6, 264 (2020)
  6. Y. Ouyang, Z. Zhang, D. Li, J. Chen, G. Zhang. Annalen der Physik, 531 (4), 1800437 (2019)
  7. M. Shtern, M. Rogachev, Y. Shtern, A. Sherchenkov, A. Babich, E. Korchagin, D. Nikulin. J. Alloys Compd., 877, 160328 (2021)
  8. A.A. Sherchenkov, Yu.I. Shtern, R.E. Mironov, M.Yu. Shtern, M.S. Rogachev. Nanotechnol. Russ., 10, 827 (2015)
  9. E. Symeou, Ch. Nicolaou, A. Delimitis, J. Androulakis, Th. Kyratsi, J. Giapintzakis. J. Solid State Chem., 270, 388 (2019)
  10. P. Dharmaiah, H.-S. Kim, C.-H. Lee, S.-J. Hong. J. Alloys Compd., 686, 1 (2016)
  11. W.H. Shin, K. Ahn, M. Jeong, J.S. Yoon, J.M. Song, S. Lee, W.S. Seo, Y.S. Lim. J. Alloys Compd., 718, 342 (2017)
  12. V. Ohorodniichuk, S. El-Oualid, A. Dauscher, C. Candolfi, P. Mass- chelein, S. Migot, P. Dalicieux, P. Baranek, B. Lenoir, J. Mater. Science, 55, 1092 (2020)
  13. A.T. Burkov, S.V. Novikov, X. Tang, Y. Yan. Semiconductors, 51, 1024 (2017)
  14. T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. Zhao. Ad- vanced Mater., 29, 1605884 (2017)
  15. A.A. Sherchenkov, Y.I. Shtern, M.Y. Shtern, M.S. Rogachev. Nano- technol. Russ., 11, 287 (2016)
  16. G. Tan, L.-D. Zhao, M.G. Kanatzidis. Chem. Rev., 116, 12123 (2016)
  17. M.Yu, Shtern, M.S. Rogachev, A.A. Sherchenkov, YuI. Shtern. Mater. Today: Proceedings, 84, 295 (2020)
  18. S. Twaha, J. Zhu, Y. Yan, B. Li. Renew. Sustain. Energy Rev., 65, 698 (2016)
  19. M.Yu. Shtern, I.S. Karavaev, Y.I. Shtern, A.O. Kozlov, M.S. Rogachev. Semiconductors. 53, 1848 (2019)
  20. C.L. Cramer, H. Wang, K. Ma. J. Electron. Mater., 47, 5122 (2018)
  21. P.H. Ngan, L. Han, D.V. Christensen. J. Electron. Mater., 47, 701 (2018)
  22. L. Cai, P. Li, Q. Luo, P. Zhai, Q. Zhang. J. Electron. Mater., 46, 1552 (2017)
  23. M. Shtern, M. Rogachev, Y. Shtern, D. Gromov, A. Kozlov, I. Kara- vaev. J. Alloys Compd., 852, 156889 (2021)
  24. S.-W. Chen, A.H. Chu, D.S.-H. Wong. J. Alloys Compd., 699, 448 (2017)
  25. H.-Y. Zhou, W.-Y. Zhao, G. Liu, H. Cheng, Q.-J. Zhang. J. Electron. Mater., 42, 1436 (2013)
  26. X.Y. Yang, J.H. Wu, M. Gub, X.G. Xia, L.D. Chen. Ceram. Int., 42, 8044 (2016)
  27. D.G. Gromov, Yu.I. Shtern, M.S. Rogachev, A.S. Shulyat'ev, E.P. Kirilenko, M.Yu. Shtern, V.A. Fedorov, M.S. Mikhailova, Inorg. Mater. 52, 1132 (2016)
  28. J. de Boor, C. Gloanec, H. Kolb, R. Sottong, P. Ziolkowsk, E. Muller. J. Alloys Compd. 632, 348 (2015)
  29. J. De Boor, D. Droste, C. Schneider, J. Janek, E. Mueller. J. Electron. Mater., 45, 5313 (2016)
  30. T. Sakamoto, Y. Taguchi, T. Kutsuwa, K. Ichimi, S. Kasatani, M. In- ada. J. Electron. Mater., |bf45, 1321 (2016)
  31. S.H. Park, Y. Kim, C.Y. Yoo, G. Yoon. J. Vac. Sci. Technol. A, 34, 061101 (2016)
  32. Y. Sadia, T. Ohaion-Raz, O. Ben-Yehuda, M. Korngold, Y. Gelbstein. J. Solid State Chem., 241, 79 (2016)
  33. M.Yu. Shtern. In: Proceedings of the 2019 IEEE Conference of Rus- sian Young Researchers in Electrical and Electronic Engineering (Moscow, Russia, 2019), p. 1920
  34. Yu. Stern, L. Pavlova, R. Mironov. J. Electron. Mater., 39 (9), 1422 (2010)
  35. Z.-G. Chen, G. Han, L. Yang, L. Cheng, J. Zou. Prog. Nat. Sci., 22, 535 (2012)
  36. Thick and thin films for electronic applications, ed. by A. Reisman, K. Rose (N. Y., Wiley, 1971)
  37. S.M. Sze, K.K. Ng. Physics of Semiconductor Devices (N. Y., Wiley, 2007)
  38. E.H. Rhoderick, R.H. Williams. Metal-Semiconductor Contacts (Ox- ford, University Press, 1988)
  39. R. Yang, S. Chen, W. Fan, X. Gao, Y. Long, W. Wang, Z.A. Munir. J. Alloys Compd. 704, 545 (2017)
  40. S.I. Novikova. Thermal expansion of solids (M., Nauka, 1974) [in Russian]
  41. S. Yoneda, M. Kato, I.J. Ohsugi. J. Appl. Phys., 107, 074901 (2010)
  42. Y. Hikage, S. Masutani, T. Sato, S. Yoneda, Y. Ohno, Y. Isoda, Y. Imai, Y. Shinohara. In: Proceedings of the 26th International Conference on Thermoelectrics (Jeju, Korea, 2007) p. 331
  43. H. Wiedemeir, P.A. Siemers. J. inor. and general chem., 431, 299 (1977)
  44. A.S. Ohotin, A.A. Efremov, V.S. Ohotin, A.S. Pushkarskij. Thermoe- lectric generators (M., Atomizdat, 1971) [in Russian]
  45. V. Ravi, S. Firdosy, T. Caillat, E. Brandon, K. Van Der Walde, L. Maricic, A. Sayir. J. Electron. Mater., 38, 1433 (2009)
  46. J.P. Dismukes, L. Ekstrom, R.J. Paff. J. Phys. Chem., 68, 3021 (1964)
  47. V.M. Glazov, V.B. Kol'tsov, V.Z. Kutsova, A.R. Regel, Yu.N. Taran, G.G. Timoshina, E.S. Fal'kevich. Fizika i tekhnika poluprovodnikov, 25 (4), 588 (1991)
  48. Pat. No. 2601243 Method for producing thermoelectric element. Yu.I. Shtern, D.G. Gromov, M.S. Rogachev, M.Yu. Shtern, S.V. Dubkov [in Russian].

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245