Impact of silicon wafer surface treatment on the morphology of GaP layers produced by plasma enhanced atomic layer deposition
Uvarov A. V.1, Sharov V. A.1,2, Kudryashov D. A.1, Gudovskikh A. S.1,3
1Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: lumenlight@mail.ru

PDF
Investigations of atomic-layer deposition of GaP layers on Si substrates with different orientations and with different preliminary surface treatment have been carried out. The deposition of GaP was carried out by the method of plasma enhanced atomic-layer deposition using in situ treatment in argon plasma. It was shown that at the initial stage of the growth of GaP layers on precisely oriented (100) Si substrates and with misorientation, two-dimensional growth occurs both after chemical and plasma surface treatment. Upon growth on (111) substrates, after plasma treatment of the surface, a transition to three-dimensional growth is observed, at which the size of islands reaches 30-40 nm. The smallest root-mean-square roughness of the surface of the growing GaP layers (<0.1 nm) was achieved for (100) substrates with a misorientation of 4o. The GaP layers grown on (100) substrates had a roughness of ~0.1 nm, and on substrates with the (111) orientation - 0.12 nm. It was found that the surface treatment of Si substrates with the (100) orientation in hydrogen plasma leads to a slight increase in the surface roughness of growing GaP layers (0.12-0.14 nm), which is associated with the effect of inhomogeneous etching of silicon in hydrogen plasma. When treating the (100) silicon surface in argon plasma, the surface roughness does not change significantly in comparison with the chemical surface treatment. On the surface of substrates with preliminary deposition of an epitaxial Si layer with a thickness of 4 nm, the morphology of GaP layers is the same as in the case of using hydrogen plasma. Keywords: PECVD, ALD, silicon, gallium phosphide
  1. K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto. Sol. Energy Mater. Sol. Cells, 173, 37 (2017)
  2. J. Bullock, M. Hettick, J. Geissbuhler, J. Alison, T. Allen, C. Sutter-Fella, T. Chen, H. Ota, E. Schaler, S. Wolf, C. Ballif, C. Cuevas, A. Javey. Nature Energy, 1, 15031 (2016). DOI: 10.1038/nenergy.2015.31
  3. J. Cui, T. Allen, Y. Wan, J. Mckeon, C. Samundsett, D. Yan, X. Zhang, Y. Cui, Y. Chen, P. Verlinden, A. Cuevas. Sol. Energy Mater. Sol. Cells, 158, 115 (2016)
  4. X. Yang, P. Zheng, Q. Bi, K. Weber. Sol. Energy Mater. Sol. Cells, 150, 32 (2016)
  5. J. Geissbuhler, J. Werner, S. Martin de Nicolas, L. Barraud, A. Hessler-Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. De Wolf, C. Ballif. Appl. Phys. Lett., 107, 081601 (2015)
  6. H. Wagner, T. Ohrdes, A. Dastgheib-Shirazi, B. Puthen-Veettil, D. Konig, P.P. Altermatt. J. Appl. Phys., 115, 044508 (2014)
  7. I. Sakata, H. Kawanami. Appl. Phys. Express, 1, 091201 (2008)
  8. A.S. Gudovskikh, K.S. Zelentsov, A.I. Baranov, D.A. Kudryashov, I.A. Morozov, E.V. Nikitina, J.-P. Kleider. Energy Procedia, 102, 56 (2016)
  9. W.C. Cooley, R.J. Janda. Handbook of Space-Radiation Effects on Solar-Cell Power Systems (published by NASA, Washington, D.C., 1963)
  10. A.S. Gudovskikh, I.A. Morozov, A. V. Uvarov, D.A. Kudryashov, E.V. Nikitina, A.S. Bukatin, V.N. Nevedomskiy, J.-P. Kleider. J. Vac. Sci. Technol. A, 36, 021302 (2018)
  11. A.S. Gudovskikh, A.V. Uvarov, I.A. Morozov, A.I. Baranov, D.A. Kudryashov, K.S. Zelentsov, A. Jaffre, S. Le Gall, A. Darga, A. Brezard-Oudot, J.-P. Kleider. Phys. Status Solidi A, 216, 1800617 (2018)
  12. A.S. Gudovskikh, A.V. Uvarov, I.A. Morozov, A.I. Baranov, D.A. Kudryashov, E.V. Nikitina, J.-P. Kleider. Phys. Status Solidi C, 14, 1700150 (2017)
  13. A.S. Gudovskikh, A.V. Uvarov, I.A. Morozov, A.I. Baranov, D.A. Kudryashov, E.V. Nikitina, A.A. Bukatin, K.S. Zelentsov, I.S. Mukhin, A. Levtchenko, S. Le Gall, J.-P. Kleider. J. Renew. Sustain. Energy, 10, 021001 (2018)
  14. A.V. Uvarov, A.S. Gudovskikh, V.N. Nevedomskiy, A.I. Baranov, D.A. Kudryashov, I.A. Morozov. J. Phys. D: Appl. Phys., 53, 345105 (2020). DOI: 10.1088/1361-6463/ab8bfd
  15. A.S. Gudovskikh, A.V. Uvarov, I.A. Morozov, A.I. Baranov, D.A. Kudryashov, K.S. Zelentsov. Materials Today: Proceedings, 21, 47 (2020). DOI: 10.1016/j.matpr.2019.07.655
  16. Y.B. Park, S.W. Rhee. Appl. Phys. Lett., 68, 2219 (1996). https://doi.org/10.1063/1.115864
  17. J. Geissbuhler, S. De Wolf, B. Demaurex, J.P. Seif, D.T.L. Alexander, L. Barraud, C. Ballif. Appl. Phys. Lett., 102, 231604 (2013)
  18. H.-Y. Shih, W.-H. Lee, W.-C. Kao, Y.-C. Chuang, R.-M. Lin, H.-C. Lin, M. Shiojiri, M.-J. Chen. Sci. Rep., 7, 39717 (2017)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru