К теории адгезии органических макромолекул на однослойном графене: модель оборванных связей
Работа выполнена при поддержке гранта РНФ 22-12-00134, 22-12-00134
Давыдов С.Ю.1
1Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
Email: Sergei_Davydov@mail.ru
Поступила в редакцию: 3 августа 2022 г.
В окончательной редакции: 3 августа 2022 г.
Принята к печати: 9 августа 2022 г.
Выставление онлайн: 27 сентября 2022 г.
Предложена модель, в которой взаимодействие макромолекулы с однослойным графеном осуществляется оборванными пограничными молекулярными связями. Для оценки энергии сшивок макромолекул с однослойным графеном или энергии адсорбции Eadsi (индекс i нумерует оборванные связи) использована простая теоретическая схема, позволяющая получить аналитические результаты. Энергия адгезии определяется как сумма слагаемых Eads_iNi, где Ni - концентрация оборванных связей. Полученные результаты сопоставлены с экспериментальными данными по адгезии для различных гетероструктур. Ключевые слова: макромолекула, графен, переход заряда, адсорбция, адгезия.
- F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov. Nature Mater. 6, 652 (2007)
- C.I. Justino, A.R. Gomes, A.C. Freitas, A.C. Duarte, T.A. Rocha-Santos. Trends Anal. Chem. 91, 53 (2017)
- L. Ge, X. Mu, G. Tian, Q. Huang, J. Ahmed, Z. Hu. Front. Chem. 7, 839 (2019)
- D.J. Buckley, N.C.G. Black, E.G. Castanon, C. Melios, M. Hardman. O. Kazakova. 2D Mater. 7, 032002 (2020)
- S.Z.N. Demon, A.I. Kamisan, N. Abdullah, S.A.M. Noor, O.K. Khim, N.A.M. Kasim, M.Z.A. Yahya, N.A.A. Manaf, A.F.M. Azmi, N.A. Halim. Sens. Mater. 32, 759 (2020)
- U. Yaqoob, M.I. Younis. Sensors 21, 2877 (2021)
- S. Dhall, B.R. Mehta, A.K. Tyagi, K. Sood. Sensors Int. 2, 100116 (2021)
- J. Pena-Bahamonde, H.N. Nguyen, S.K. Fanourakis, D.F. Rodrigues. J. Nanobiotechnology 16, 75 (2018)
- S. Szunerits, R. Boukherroub. Interface Focus 8, 20160132 (2018)
- A.F. Behbahani, G.H. Motlagh, S.M.V. Allaei, V.A. Harmandaris. Macromolecules 52, 3825 (2019)
- S.K. Krishnan, E. Singh, P. Singh, M. Meyyappan, H.S. Nalwa. RSC Adv. 9, 8778 (2019)
- Y. Bai, T. Xu, X. Zhang. Micromachines 11, 60 (2020)
- M. Coros, S. Pruneanu, R.-I. Stefan-van Staden. J. Electrochem. Soc. 167, 037528 (2020)
- A.A. Lebedev, S.Yu. Davydov, I.A. Eliseyev, A.D. Roenkov, O. Avdeev, S.P. Lebedev, Y. Makarov, M. Puzyk, S. Klotchenko, A.S. Usikov. Materials 14, 590 (2021)
- V. Naresh, N. Lee. Sensors 21, 1109 (2021)
- S. Shahriari, M. Sastry. S. Panjikar, R.K. Singh Raman. Nanotechnol. Sci. Appl. 14, 197 (2021)
- Laxmi, B. Mahapatra, R.V. Krishna, P.K. Patel. AIP Conf. Proc. 2327, 020011 (2021)
- S. Wang, X. Qi, D. Hao, R. Moro, Y. Ma, L. Ma. J. Electrochem. Soc. 169, 027509 (2022)
- О.М. Браун, В.К. Медведев. УФН 157, 631 (1989)
- С.Ю. Давыдов, С.В. Трошин. ФТТ 49, 1508 (2007)
- С.Ю. Давыдов. Теория адсорбции: метод модельных гамильтонианов. Изд-во СПбГЭТУ "ЛЭТИ", СПб (2013). 235 с. twirpx.com/file/1596114/
- О.Г. Татарникова, М.А. Орлов, Н.В. Бобкова. Успехи биологической химии 55, 351 (2015)
- Дж. Займан. Модели беспорядка. Мир, М. (1982). Гл. 7
- H. Ji, P.-G. de Gemnes. Macromolecules 26, 52M25 (1993)
- C.-A. Palma, P. Samori. Nature Chem. 3, 431 (2011)
- С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник. Элементарное введение в теорию наносистем. Изд-во "Лань", СПб (2014). Гл. 9
- A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. Rev. Mod. Phys. 81, 109 (2009)
- С.Ю. Давыдов. ФТП 51, 226 (2017)
- С.Ю. Давыдов, О.В. Посредник. ЖТФ 87, 4, 635 (2017)
- J.-H. Kim, J.H. Hwang, J. Suh, S. Tongay, S. Kwon, C.C. Hwang, J. Wu, J.Y. Park. Appl. Phys. Lett. 103, 171604 (2013)
- D. Niesner, T. Fauster. J. Phys.: Condens. Matter 26, 393001 (2014)
- Физические величины. Справочник. Под ред. Е.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1991)
- J. Ni, N. Yang, Q. Liang, J. Jiang, X. Chen. 16th International Conference on Electronic Packaging Technology (ICEPT) --- Changsha, China (2015). DOI: 1109/ICEPT.2015.7236745.
- T.Y. Mi, D.M. Triet, N.T. Tien. Phys. Open 2, 100014 (2020)
- T. Xie, P. Wang, C. Tian, G. Zhao, J. Jia, C. He, C. Zhao, H. Wu. Molecules 27, 2315 (2022)
- W.A. Harrison. Phys. Rev. B 27, 3592 (1983)
- O. Leenaerts, B. Partoens, F.M. Peeters. Phys. Rev. B 77, 125416 (2008)
- S. Kumar, M. Malhotra, H. Sharma. Mater. Res. Express 5, 105007 (2018)
- B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.-L. Gu, W. Duan. J. Phys. Chem. C 112, 13442 (2008)
- D.C. Elias, R.V. Gorbachev, A.S. Mayorov, S.V. Morozov, A.A. Zhukov, P. Blake, L.A. Ponomarenko, I.V. Grigorieva, K.S. Novoselov, F. Guinea, A.K. Geim. Nature Phys. 7, 701 (2011)
- E.J.G. Santos, E. Kaxiras. Nano Lett. 13, 898 (2013)
- H. Rokni, W. Lu. Nature Commun. 11, 5607| (2020)
- B. Yu, L. Hou, S. Wang, H. Huang. Adv. Mater. Interfaces 6, 1801552 (2018)
- E. Blundo, T. Yildirim, G. Pettinari, A. Polimeni. Phys. Rev. Lett. 127, 046101 (2021)
- J.R. Rumptz, C.T. Campbell. ACS Catal. 9, 11819 (2019)
- A.E. Chalykh, V.Yu. Stepanenko, A.D. Aliev. Polymers 12, 2956 (2020)
- R. Ungai-Salanki, B. Peter, T. Gerecsei, N. Orgovan, R. Horvath, B. Szabo. Adv. Colloid Interface Sci. 269, 309 (2019)
- S. Cai, C. Wu, W. Yang, W. Liang, H. Yu, L. Liu. Nanotechnol. Rev. 9, 971 (2020)
- D. El Arawi, C. Vezy, R. Deturche, M. Lehmann, H. Kessler, M. Dontenwill, R. Jaffiol. Biophys. Rep. 1, 100021 (2021)
- C. Meng, K. Gao, S. Tang, L. Zhou, W. Lai, L. Luo, X. Wang, Y. Liu, K. Wang, Y. Chen, X. Liu. J. Colloid Interface Sci. 599, 12 (2021)
- N.M.R. Peres, F. Guinea, A.H. Castro Neto. Phys. Rev. B 73, 125411 (2006)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.