13,18

К теории адгезии органических макромолекул на однослойном графене: модель оборванных связей

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: Sergei Davydov@mail.ru

Поступила в Редакцию 3 августа 2022 г. В окончательной редакции 3 августа 2022 г. Принята к публикации 9 августа 2022 г.

Предложена модель, в которой взаимодействие макромолекулы с однослойным графеном осуществляется оборванными пограничными молекулярными связями. Для оценки энергии сшивок макромолекул с однослойным графеном или энергии адсорбции E_i^{ads} (индекс *i* нумерует оборванные связи) использована простая теоретическая схема, позволяющая получить аналитические результаты. Энергия адгезии определяется как сумма слагаемых $E_i^{ads}N_i$, где N_i — концентрация оборванных связей. Полученные результаты сопоставлены с экспериментальными данными по адгезии для различных гетероструктур.

Ключевые слова: макромолекула, графен, переход заряда, адсорбция, адгезия.

DOI: 10.21883/FTT.2022.12.53661.452

1. Введение

Среди разнообразных уникальных свойств графена его способность в недопированном состоянии детектировать адсорбцию одиночной молекулы газа, впервые продемонстрированная в работе [1], привлекла, повидимому, наибольший интерес исследователей. Этот интерес вызвал теоретические предложения (с последующей технологической реализацией) различных вариантов химических газовых сенсоров [2-7]. Дальнейшими шагами в этом направлении стали биосенсоры [2,8–18]. С теоретической точки зрения, для описания работы сенсора необходимо знать величину перехода заряда между адсорбированным объектом и подложкой; с технологической точки зрения — энергию связи изучаемого объекта с подложкой (энергию адсорбции). Что касается газовых молекул (равно как и других микрообъектов), то для ответов на эти вопросы разработаны как многочисленные варианты расчетов из первых принципов (в основном, основанные на теории функционала плотности (DFT)), так и модельные подходы [19-21]. В случае биообъектов, представляющих собой макромолекулы (MM), DFT-методы чрезвычайно трудоемки. Действительно (см. [22]), характерные структуры ММ представляют собой бляшки (plaques), образованные, например бета-амилоидным пептидом (A β), имеющим молекулярную массу 4 · 10³ водородных масс и линейные размеры около 40 аминокислотных остатков (один неструктурированный аминокислотный остаток имеет длину 0.36 nm). Более того, и геометрия такой бляшки, и площадь ее контакта с подложкой не только неизвестны, но и не являются сколь-либо фиксированными, а скорее представляют собой случайные величины. Поэтому даже для модельного описания системы макромолекула-подложка требуются радикально упрощенные схемы. (Отметим, что подобная ситуация имела место при рассмотрении термодинамики свободных макромолекул [23]). В настоящей работе, насколько известно автору, предпринята первая попытка в рамках простой модели описать на микроскопическом уровне связь ММ с твердотельной подложкой (здесь — с графеном).

В представленной ниже модели оборванных связей предполагается, что взаимодействие MM с однослойным графенм (SLG — single layer graphene) осуществляется сшивками этих интерфейсных орбиталей с атомами графена [24,25] (рис. 1, 2). О такой многоцентровой адсорбции логичнее говорить как об адгезии MM на SLG.

2. Модель

Представим гамильтониан системы MM-SLG в виде

$$H = \sum_{\mathbf{k}} \varepsilon_{\text{SLG}}(\mathbf{k}) c_{\mathbf{k}}^{+} c_{\mathbf{k}} + \sum_{i} \varepsilon_{i} a_{i}^{+} a_{i}$$
$$+ \sum_{i,\mathbf{k}} \frac{V_{i}^{2} (c_{\mathbf{k}}^{+} a_{i} + a_{i}^{+} c_{\mathbf{k}})}{\omega - \varepsilon_{\text{SLG}}(\mathbf{k}) + i0^{+}}, \qquad (1)$$

где ω — энергетическая переменная, $\varepsilon_{\text{SLG}}(\mathbf{k})$ — закон дисперсии SLG, ε_i — энергия *i*-ой оборванной связи MM (*p*-орбитали, до взаимодействия с графеном содержавшей один электрон), V_i — энергия взаимодействия *i*-ой связи MM с электронным спектром SLG, $c_{\mathbf{k}}^+(c_{\mathbf{k}})$ оператор рождения (уничтожения) электрона SLG в состоянии $|\mathbf{k}\rangle$, $a_i^+(a_i)$ — аналогичные операторы для *i*-ой оборванной связи MM. Легко показать [20,21,26], что вследствие адсорбции плотность состояний (DOS)

Рис. 1. Схема контакта макромолекулы с однослойным графеном. Вертикальными линиями изображены сшивки MM с SLG.

Рис. 2. Энергетическая диаграмма адгезии MM на SLG (ε_i — энергия оборванной связи, ε_D — энергия точки Дирака).

электрона на *i*-ой связи (на одну проекцию спина) равна

$$\rho_i(\omega) = \frac{1}{\pi} \frac{\Gamma_i(\omega)}{\left(\omega - \varepsilon_i - \Lambda(\omega)\right)^2 + \Gamma_i^2(\omega)},$$
 (2)

где функции уширения и сдвига *i*-го квазиуровня равны соответственно

$$\Gamma_{i}(\omega) = \pi V_{i}^{2} \rho_{\text{SLG}}(\omega), \quad \Lambda_{i}(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\Gamma_{i}(\omega') d\omega'}{\omega - \omega'} \quad (3)$$

и $\rho_{\text{SLG}}(\omega)$ — плотность состояний SLG. В рамках низкоэнергетического приближения спектр SLG имеет вид $\varepsilon_{\text{SLG}}^{\pm}(\mathbf{k}) = \pm (3t/2) |\mathbf{k}|a, [27]$, где $t \sim 2.7 \text{ eV}$ — энергия перескока электрона между ближайшими соседями в SLG, находящимися на расстоянии a, \mathbf{k} — волновой вектор, отсчитываемый от волнового вектора точки Дирака, которой приписывается энергия $\varepsilon_D = 0$ [27]. Такому спектру в низкоэнергетической области (т.е. вблизи точки Дирака) соответствует DOS вида

$$\rho_{\rm SLG}(\omega) = |\omega| / \xi^2, \quad |\omega| < \xi, \tag{4}$$

где $\xi = \sqrt{\pi\sqrt{3}/4t} \sim t \sim 3 \,\text{eV}$ [27]. Тогда функции полуширины и сдвига квазиуровней ММ можно представить в следующем виде [28]:

$$\Gamma_{i}(\omega) = \pi V_{i}^{2} \rho_{\text{SLG}}(\omega),$$

$$\Lambda_{i}(\omega) = \frac{V_{i}^{2} \omega}{\xi^{2}} \ln[\omega^{2}/(\xi^{2} - \omega^{2})].$$
(5)

Используя приближение, часто применяемое в теории адсорбции [21], и полагая $V_i^2/\xi^2 \ll 1$, представим DOS (2) в виде

$$\rho_i(\omega) \approx \frac{1}{\pi} \frac{\bar{\Gamma}_i}{(\omega - \bar{\varepsilon}_i)^2 + \bar{\Gamma}_i^2},\tag{6}$$

где $\bar{\varepsilon}_i = \varepsilon_i + \Lambda_i(\varepsilon_i)$, $\bar{\Gamma}_i = \pi V_i^2 \rho_{\text{SLG}}(\varepsilon_i)$. Так как при нулевой температуре число заполнения *i*-ой (изначально оборванной) связи есть

$$n_i = 2 \int_{-\infty}^{0} \rho_i(\omega) d\omega, \qquad (7)$$

где уровень Ферми недопированного графена $E_F = \varepsilon_D = 0$, заряд этой связи $Z_i = 1 - n_i$ приближенно равен

$$Z_i \approx \frac{2}{\pi} \arctan \frac{\bar{\varepsilon}_i}{\bar{\Gamma}_i}.$$
 (8)

Суммарный заряд, переходящий с MM на SLG, равен $Z_{\text{SLG}} = -\sum_i Z_i$, так что в изначально недопированном графене возникают носители тока с концентрацией $n_{\text{SLG}} = |Z_{\text{SLG}}|/S$, где $S = 3\sqrt{3}a^2/2$ — площадь элементарной ячейки графена (a = 1.42 Å — расстояние между ближайшими соседями в графене). Таким образом, проводимость SLG становится равной

$$\sigma_{\rm SLG} = e n_{\rm SLG} \mu_{\rm SLG}, \tag{9}$$

где μ_{SLG} — подвижность носителей. При $Z_{SLG} < 0$ носителями тока являются электроны, при $Z_{SLG} > 0$ дырки. При записи соотношения (9) мы полагали, что подвижность носителей слабо зависит от адсорбции (см. [29] и ссылки, приведенные там).

По аналогии с энергией адсорбции [21,26], энергию адгезии представим в виде суммы ионной E_{adh}^{ion} и металлической E_{ads}^{met} составляющих. Величину E_{adh}^{ion} можно оценить как электростатическую энергию вида

$$E_{adh}^{ion} = \sum_{i} E_i^{ion} N_i, \quad E_i^{ion} = e^2 Z_i^2 / 4\varepsilon_{st} d_i, \qquad (10)$$

где e — элементарный заряд, d_i — длина адсорбционной связи, ε_{st} — статическая диэлектрическая проницаемость SLG, $N_i = m_i/S$ — концентрация оборванных связей числом m_i , приходящихся на элементарную ячейку графена.

Металлическую составляющую E_{ads}^{met} оценим исходя из соотношения неопределенностей. В отсутствие контакта с SLG неопределенность положения электрона Δr_a^i , локализованного на связи *i*, порядка радиуса r_{ai} того

атома, через который осуществляется связь с графеном. При этом кинетическая энергия электрона E_{kin}^i — величина порядка $\hbar/2m_0r_{ai}^2$, где m_0 — масса свободного электрона, \hbar — приведенная постоянная Планка. Если считать, что переходя со связи *i* в SLG электрон полностью делокализуется, вклад таких электронов в энергию адгезии, равный понижению кинетической энергии, есть

$$E_{i1}^{met} = |Z_i| (h^2 / 2m_0 r_{ai}^2).$$
(11)

Для оставшейся части электронов $1-|Z_i|$ неопределенность координаты Δr_a^i порядка d_i , так что выигрыш в кинетической энергии равен

$$E_{i2}^{met} = 2(1 - |Z_i|)(h^2/m_0 d_i^2)(1 - r_{ai}^2/d_i^2).$$
(12)

Таким образом, суммарная энергия адсорбции для *i*-ой связи есть $E_i^{ads} = E_i^{ion} + E_i^{met}$, где $E_i^{met} = E_{i1}^{met} + E_{i2}^{met}$. Энергия адгезии MM на SLG равна

$$E_{adh} = \sum_{i} E_i^{ads} N_i.$$
 (13)

В отсутствие перехода заряда $E_{ads} = (h^2/m_0 d^2)M/a^2\sqrt{3}$, где $M = \sum_i m_i$. Отметим, что введенная нами пропорциональность энергии адгезии N_i справедлива при $m_i \ll 1$, когда можно не учитывать взаимодействие оборванных связей.

Случаи адгезии MM на допированном графене и графене со щелью в электронном спектре обсуждаются в Приложении.

3. Численные оценки

ММ состоят из различных молекулярных комбинаций атомов H, C, N и O. Оборванные связи атомов C, N и O граничащих с SLG молекул мы и рассматриваем как *i*-связи. Для оценки энергии ε_i , отсчитываемой от точки Дирака графена, положим $\varepsilon_i = \phi_{\text{SLG}} - (I_i + A_i)/2$ (ϕ_{SLG} — работа выхода SLG, I_i и A_i — энергии ионизации и сродства к электрону молекулы). При этом учтено, что внутриатомное кулоновское отталкивание электронов с противоположными спинами $U_i = I_i - A_i$. Работа выхода $\phi_{\text{SLG}} = 4.50 \text{ eV}$ [30,31], величины I_i и A_i для ряда молекул газа взяты из [32]. Полученные значения ε_i приведены в таблице.

Отметим одно дополнительное обстоятельство: реальные энергии ε_i оборванных связей для одной и той же молекулы зависят от того, с каким фрагментом MM эта молекула связана. Действительно, представим димер, состоящий из "атома" с энергией орбитали ε_* , моделирующего фрагмент MM, и "атома" с энергией орбитали ε_i , моделирующего молекулу. Если связь состояний ε_* и ε_i осуществляется матричным элементом t_* , получаем связывающее (знак минус) и антисвязывающее (знак С.Ю. Давыдов

Фрагмент ММ	ε_i , eV	Z_i	E_i^{ion} , eV	E_{i1}^{met} , eV	E_{i2}^{met} , eV	E_i^{ads} , eV
O ₂	-1.78	-0.12	0.01	0.29	1.61	1.91
NO	-0.47	0.67	0.43	1.64	0.60	2.67
NH	-0.32	0.53	0.27	1.15	0.85	2.27
CH ₂	-1.02	0.20	0.04	0.49	1.46	1.99
NH ₂	-0.96	0.23	0.05	0.56	1.42	2.03
CH ₃	-0.96	0.23	0.05	0.56	1.42	2.03

плюс) состояния

$$\varepsilon_{\pm} = \left[\varepsilon_* + \varepsilon_i \pm \sqrt{(\varepsilon_* - \varepsilon_i)^2 + 4t_*^2}\right] / 2.$$

Таким образом, энергии оборванных связей одной и той же контактирующей с графеном молекулы будут различаться.

Согласно численным расчетам [33-35], значения d_i для молекул газа C, N и O лежат в интервале $\sim 2-3$ Å. Для σ -связи оборванных *р*-орбиталей SLG MM *p*_z-орбиталью имеем $V_i = V_{pp\sigma}$ С $= 2.22(h^2/m_0d_i^2)$ [36], что для среднего значения длины связи $d \approx 2.5$ Å дает среднюю энергию $V \approx 3$ eV. Таким образом, $V^2/\xi^2 \sim 1$. Отметим, что возможность такого усреднения основана на близости атомных радиусов r_{ai} атомов С, N и О, равных соответственно 0.77, 0.71 и 0.74 Å [32].

Значения $\bar{\varepsilon}_i$, найденные из уравнения $\bar{\varepsilon}_i = \varepsilon_i + \Lambda(\varepsilon_i)$, и Z_i приведены в таблице. Полученные нами величины зарядов значительно превосходят результаты в численных расчетов [37,38], но того же порядка, что в [39] (в [37,38] длины адсорбционных связей значительно больше, чем в нашей работе). Отметим, что знаки даже для одной и той же молекулы в зависимости от ее ориентации относительно листа графена могут различаться [37]. Как следствие, значения $Z_{\text{SLG}} = -\sum_i Z_i$ и σ_{SLG} могут быть близки к нулю, несмотря на то, что $Z_i \neq 0$.

При оценках составляющих энергии адгезии (8)-(10)положим для простоты $r_{ai} = d_i/2 = d/2$, откуда $E_i^{ion} = (eZ_i)^2/2\varepsilon_{st}d$, $E_{i1}^{met} = 2|Z_i|(\hbar^2/m_0d^2)$, $E_{i2}^{met} = (3/2)(1-|Z_i|)(\hbar^2/m_0d^2)$, так что

$$E_{adh}^{ion} = (e^2/2\varepsilon_{st}d) \sum_i Z_i^2 N_i,$$

$$E_{adh}^{met} = (3h^2/2m_0d^2) \sum_i [1+|Z_i|]N_i.$$
(14)

Результаты оценок приведены в таблице; при расчете E_i^{ion} мы положили $\varepsilon_{st} = 3$ [40,41].

При оценках составляющих энергии адгезии (10)–(12) положим для простоты $r_{ai} = d_i/2 = d/2$, откуда $E_i^{ion} = (eZ_i)^2/2\varepsilon_{st}d$, $E_{i1}^{met} = 2|Z_i|(\hbar^2/m_0d^2)$, $E_{i2}^{met} = (3/2)(1 - |Z_i|)(\hbar^2/m_0d^2)$ и $E_i^{met} = (3\hbar/2m_0d^2)$ $\times \sum_i (1 + |Z_i|)$. Результаты оценок приведены в таблице (при расчете E_i^{ion} мы положили $\varepsilon_{st} = 3$ [40,41]).

В отсутствие перехода заряда

 $E_{adh}(Z_i = 0)/M = (h^2/m_0 d^2)/a^2 \sqrt{3}$ = 0.35 eV/Å² = 5.6 J/m², (15)

где $M = \sum_{i} m_{i}$. Экспериментальные значения энергии межплоскостной адгезии в слоистых структурах графита и гексагонального нитрида бора составляют 0.33 J/m^2 , в структурах, построенных из слоев MoS₂ — 0.48 J/m² [42]. Следует отметить значительный разброс экспериментальных данных: для графита, например, Eadh лежит в пределах 0.15-0.72 J/m²; для гетероструктур, образованных SLG и MoS₂ на подложке SiO_x E_{adh} оценивается как 0.14-0.90 J/m² и 0.17-0.48 J/m² соответственно [42]. Для слюды имеем $E_{adh} \approx 0.22 \text{ J/m}^2$ [43]. В случае ряда ван-дер-ваальсовых вертикальных гетероструктур в работе [44] приводятся значения от нескольких единиц до ~ 20 meV/Å². Энергии адгезии жидких растворителей на Pt (111) и Ni (111) варьируются от 0.15 до 0.60 J/m², увеличиваясь в направлении $CH_3OH < HCOOH < H_2O < бензол \approx фенол [45]. Для ад$ гезии различных полимеров на поверхности полимера с жесткой цепью E_{adh} имеет величину 40-70 mJ/m² [46]. Чисто формально применяя к приведенным экспериментальным результатам формулу (15), приходим к выводу, что величина множителя М не должна превышать 0.01-0.1.

4. Заключение

В настоящей работе предложена модель, в которой контакт MM с SLG обусловлен оборванными связями, и представлена простая теоретическая схема для оценки соответствующих энергий связи. Такой подход позволил получить аналитические выражения для энергии адгезии. Результаты расчетов сопоставлялись с имеющимися экспериментальными данными.

Обращаясь к биологическим системам, следует отметить, что информация о межклеточной и межклеточноматричной адгезии является крайне важной и имеет решающее значение не только для фундаментальных исследований, но и для технологических применений [47–49]. Отметим, однако, что количественных исследований адгезии явно недостаточно, хотя подобного рода работы начинают появляться [10,50]. Более того, в работах по биосенсорам [2,8–18] вопросы адгезии вообще не рассматриваются.

Предложенная модель адгезии значительно упрощена, но даже в этом случае для адекватной оценки параметров нужна дополнительная информация. Поэтому для развития теории адгезии макромолекул на графене требуются экспериментальные исследования.

Финансирование работы

Работа выполнена при поддержке гранта РНФ 22-12-00134.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Приложение

1. До сих пор мы рассматривали недопированный графен. Выясним, как допирование изменяет адгезию MM на SLG, для чего в выражении (7) верхний предел интегрирования $E_F = 0$ заменим на $E_F = \delta E_F$. Тогда числитель уравнения (8) равен $\bar{\varepsilon}_i - \delta E_F$. Полагая для простоты $|\delta E_F| \ll \bar{\Gamma}_i$, вместо (8) получим

$$Z_i = Z_i - \pi \rho_i(\bar{\varepsilon}_i) \delta E_F, \qquad (\Pi 1)$$

где DOS $\rho_i(\bar{\varepsilon}_i)$ определяется выражением (6). Тогда при сдвиге уровня Ферми вверх от точки Дирака SLG величины отрицательных зарядов на оборванных связях возрастают, а положительных зарядов уменьшаются. Таким образом, для рассмотренных нами случаев при $\delta E_F > -0$ величина заряда оборванной связи O₂ возрастает, а остальных молекул убывает (см. таблицу). При сдвиге уровня Ферми вниз от точки Дирака имеет место обратная картина. Суммарный эффект допирования зависит от конкретных значений положительных и отрицательных зарядов и их концентраций, т.е. коэффициентов m_i . Отметим, что, согласно (14), ионная и металлическая составляющие энергии адгезии с ростом $|Z_i|$ возрастают.

2. Рассмотрим теперь, как влияет наличие в электронном спектре SLG щели шириной 2Δ на адгезию. В этом случае вблизи щели DOS SLG можно представить в виде

$$\rho_{\rm SLG}(\omega) = \begin{cases} |\omega|/\xi^2, & |\omega| > \Delta, \\ 0, & |\omega| \le \Delta, \end{cases} \tag{I12}$$

полагая, что центр щели совпадает с точкой Дирака $\varepsilon_D = 0$. Тогда вместо функции сдвига (5) получим следующее выражение [27]:

$$\Lambda_i(\omega) = \frac{V_i^2 \omega}{\xi^2} \ln \left| \frac{\Delta^2 - \omega^2}{\xi^2 + \Delta^2 - \omega^2} \right|. \tag{II3}$$

Когда уровень оборванной связи ε_i перекрывается со сплошным спектром щелевого графена, имеем ситуацию, изученную выше для бесщелевого графена. Поэтому обратимся к случаю, когда уровень ε_i попадает в щель. Как показано в [27], число заполнения такого уровня равно

$$n_i^{loc} = \left| 1 - \frac{\partial \Lambda_i(\omega)}{\partial \omega} \right|_{\bar{\varepsilon}_i^{loc}}^{-1},\tag{II4}$$

где $\bar{\varepsilon}_i^{loc} = \varepsilon_i + \Lambda_i(\varepsilon_i)$ — энергия локального уровня, лежащего в щели ($|\bar{\varepsilon}_i^{loc}| < \Delta$). Аналитическое выражение для $\partial \Lambda_i(\omega) / \partial \omega$ приведено в [27]. Определив значение $\bar{\varepsilon}_i^{loc}$ и вычислив n_i^{loc} , найдем заряд локального

уровня $Z_i^{loc} = 1 - n_i^{loc}$, который и подставим в уравнения (11)-(13).

Отметим следующее обстоятельство. В настоящей работе для определения DOS (4) и (П2) мы оперировали параметром $\xi = \sqrt{\pi\sqrt{3}/4t}$, адекватно описывающим производную $\partial \rho_{\rm SLG}(\omega)/\partial \omega \propto \xi^{-2}$ при $|\omega| \ll \xi$. С другой стороны, при расчете чисел заполнения графена вместо ξ^2 используют величину $\xi^2/2$, где $\xi = \sqrt{2\pi\sqrt{3}t} \sim 3t$ [51]. Именно поэтому в работе [27] фигурирует параметр ξ . Здесь же мы не вычисляем заряд SLG непосредственно, а, исходя из сохранения числа электронов, принимаем его равным — $\sum_i Z_i$, тогда как при расчете заряда Z_i для оценок входящих в формулу (8) значений $\bar{\varepsilon}_i$ и $\bar{\Gamma}_i$ правильнее использовать парамет ξ .

Список литературы

- F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov. Nature Mater. 6, 652 (2007).
- [2] C.I. Justino, A.R. Gomes, A.C. Freitas, A.C. Duarte, T.A. Rocha-Santos. Trends Anal. Chem. **91**, 53 (2017).
- [3] L. Ge, X. Mu, G. Tian, Q. Huang, J. Ahmed, Z. Hu. Front. Chem. 7, 839 (2019).
- [4] D.J. Buckley, N.C.G. Black, E.G. Castanon, C. Melios, M. Hardman. O. Kazakova. 2D Mater. 7, 032002 (2020).
- [5] S.Z.N. Demon, A.I. Kamisan, N. Abdullah, S.A.M. Noor, O.K. Khim, N.A.M. Kasim, M.Z.A. Yahya, N.A.A. Manaf, A.F.M. Azmi, N.A. Halim. Sens. Mater. **32**, 759 (2020).
- [6] U. Yaqoob, M.I. Younis. Sensors 21, 2877 (2021).
- [7] S. Dhall, B.R. Mehta, A.K. Tyagi, K. Sood. Sensors Int. 2, 100116 (2021).
- [8] J. Pena-Bahamonde, H.N. Nguyen, S.K. Fanourakis, D.F. Rodrigues. J. Nanobiotechnology 16, 75 (2018).
- [9] S. Szunerits, R. Boukherroub. Interface Focus 8, 20160132 (2018).
- [10] A.F. Behbahani, G.H. Motlagh, S.M.V. Allaei, V.A. Harmandaris. Macromolecules 52, 3825 (2019).
- [11] S.K. Krishnan, E. Singh, P. Singh, M. Meyyappan, H.S. Nalwa. RSC Adv. 9, 8778 (2019).
- [12] Y. Bai, T. Xu, X. Zhang. Micromachines 11, 60 (2020).
- [13] M. Coros, S. Pruneanu, R.-I. Stefan-van Staden. J. Electrochem. Soc. 167, 037528 (2020).
- [14] A.A. Lebedev, S.Yu. Davydov, I.A. Eliseyev, A.D. Roenkov,
 O. Avdeev, S.P. Lebedev, Y. Makarov, M. Puzyk,
 S. Klotchenko, A.S. Usikov. Materials 14, 590 (2021).
- [15] V. Naresh, N. Lee. Sensors 21, 1109 (2021).
- [16] S. Shahriari, M. Sastry. S. Panjikar, R.K. Singh Raman. Nanotechnol. Sci. Appl. 14, 197 (2021).
- [17] Laxmi, B. Mahapatra, R.V. Krishna, P.K. Patel. AIP Conf. Proc. 2327, 020011 (2021).
- [18] S. Wang, X. Qi, D. Hao, R. Moro, Y. Ma, L. Ma. J. Electrochem. Soc. 169, 027509 (2022).
- [19] О.М. Браун, В.К. Медведев. УФН 157, 631 (1989).
- [20] С.Ю. Давыдов, С.В. Трошин. ФТТ 49, 1508 (2007).
- [21] С.Ю. Давыдов. Теория адсорбции: метод модельных гамильтонианов. Изд-во СПбГЭТУ "ЛЭТИ", СПб (2013). 235 с. twirpx.com/file/1596114/.

- [22] О.Г. Татарникова, М.А. Орлов, Н.В. Бобкова. Успехи биологической химии 55, 351 (2015).
- [23] Дж. Займан. Модели беспорядка. Мир, М. (1982). Гл. 7.
- [24] H. Ji, P.-G. de Gemnes. Macromolecules 26, 52M25 (1993).
- [25] C.-A. Palma, P. Samorí. Nature Chem. 3, 431 (2011).
- [26] С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник. Элементарное введение в теорию наносистем. Изд-во "Лань", СПб (2014). Гл. 9.
- [27] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. Rev. Mod. Phys. 81, 109 (2009).
- [28] С.Ю. Давыдов. ФТП 51, 226 (2017).
- [29] С.Ю. Давыдов, О.В. Посредник. ЖТФ 87, 4, 635 (2017).
- [30] J.-H. Kim, J.H. Hwang, J. Suh, S. Tongay, S. Kwon, C.C. Hwang, J. Wu, J.Y. Park. Appl. Phys. Lett. 103, 171604 (2013).
- [31] D. Niesner, T. Fauster. J. Phys.: Condens. Matter 26, 393001 (2014).
- [32] Физические величины. Справочник. Под ред. Е.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1991).
- [33] J. Ni, N. Yang, Q. Liang, J. Jiang, X. Chen. 16th International Conference on Electronic Packaging Technology (ICEPT) — Changsha, China (2015). DOI: 1109/ICEPT.2015.7236745.
- [34] T.Y. Mi, D.M. Triet, N.T. Tien. Phys. Open 2, 100014 (2020).
- [35] T. Xie, P. Wang, C. Tian, G. Zhao, J. Jia, C. He, C. Zhao, H. Wu. Molecules 27, 2315 (2022).
- [36] W.A. Harrison. Phys. Rev. B 27, 3592 (1983).
- [37] O. Leenaerts, B. Partoens, F.M. Peeters. Phys. Rev. B 77, 125416 (2008).
- [38] S. Kumar, M. Malhotra, H. Sharma. Mater. Res. Express 5, 105007 (2018).
- [39] B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.-L. Gu, W. Duan. J. Phys. Chem. C 112, 13442 (2008).
- [40] D.C. Elias, R.V. Gorbachev, A.S. Mayorov, S.V. Morozov, A.A. Zhukov, P. Blake, L.A. Ponomarenko, I.V. Grigorieva, K.S. Novoselov, F. Guinea, A.K. Geim. Nature Phys. 7, 701 (2011).
- [41] E.J.G. Santos, E. Kaxiras. Nano Lett. 13, 898 (2013).
- [42] H. Rokni, W. Lu. Nature Commun. 11, 5607| (2020).
- [43] B. Yu, L. Hou, S. Wang, H. Huang. Adv. Mater. Interfaces 6, 1801552 (2018).
- [44] E. Blundo, T. Yildirim, G. Pettinari, A. Polimeni. Phys. Rev. Lett. 127, 046101 (2021).
- [45] J.R. Rumptz, C.T. Campbell. ACS Catal. 9, 11819 (2019).
- [46] A.E. Chalykh, V.Yu. Stepanenko, A.D. Aliev. Polymers 12, 2956 (2020).
- [47] R. Ungai-Salánki, B. Peter, T. Gerecsei, N. Orgovan, R. Horvath, B. Szabó. Adv. Colloid Interface Sci. 269, 309 (2019).
- [48] S. Cai, C. Wu, W. Yang, W. Liang, H. Yu, L. Liu. Nanotechnol. Rev. 9, 971 (2020).
- [49] D. El Arawi, C. Vezy, R. Déturche, M. Lehmann, H. Kessler, M. Dontenwill, R. Jaffiol. Biophys. Rep. 1, 100021 (2021).
- [50] C. Meng, K. Gao, S. Tang, L. Zhou, W. Lai, L. Luo, X. Wang, Y. Liu, K. Wang, Y. Chen, X. Liu. J. Colloid Interface Sci. 599, 12 (2021).
- [51] N.M.R. Peres, F. Guinea, A.H. Castro Neto. Phys. Rev. B 73, 125411 (2006).

Редактор Е.Ю. Флегонтова