Вышедшие номера
Синтез порошка ниобата калия-натрия в среде водяного пара для изготовления пьезоэлектрической керамики
Российский научный фонд, Проведение фундаментальных научных исследований и поисковых научных исследований отдельными научными группами, 20-19-00780
Холодкова А.А. 1,2, Смирнов А.В. 1, Тихонов А.А. 1, Шишковский И.В. 1
1Сколковский институт науки и технологий, Москва, Россия
2Московский государственный университет им. М.В. Ломоносова, Москва, Россия
Email: anastasia.kholodkova@gmail.com, smirnoff-andrey2009@yandex.ru, a.tikhonov@skoltech.ru, I.Shishkovsky@skoltech.ru
Поступила в редакцию: 7 июня 2022 г.
В окончательной редакции: 19 сентября 2022 г.
Принята к печати: 22 сентября 2022 г.
Выставление онлайн: 29 октября 2022 г.

Впервые проведен синтез однофазного порошка ниобата калия-натрия с размером первичных частиц 0.3-3.1 μm в среде водяного пара при температуре 260oC и давлении 4.69 MPa. С помощью двух различных керамических технологий - традиционной и использующей лазерную стереолитографию - на основе порошка изготовлена керамика c плотностью 80-85% от теоретической, а также исследованы ее пьезоэлектрические свойства. Полученные предварительные результаты указывают на перспективу совершенствования фазовых, структурных и пьезоэлектрических свойств керамики ниобата калия-натрия путем управления режимом синтеза порошка в водяном паре и подбора условий обжига. Ключевые слова: пьезоэлектрическая керамика, синтез сложных оксидов, ниобат калия-натрия, лазерная стереолитография.
  1. J. Rodel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc., 35, 1659 (2015). DOI: 10.1016/j.jeurceramsoc.2014.12.013
  2. P. Pop-Ghe, N. Stock, E. Quandt, Sci Rep., 9, 19775 (2019). DOI: 10.1038/s41598-019-56389-9
  3. B. Malivc, J. Koruza, J. Hrevsvcak, J. Bernard, K. Wang, J.G. Fisher, A. Benvcan, Materials, 8, 8117 (2015). DOI: 10.3390/ma8125449
  4. J.-Q. Zhao, Y.-G. Liu, M.-H. Fang, Z.-H. Huang, T.-H. Zhang, J. Electroceram., 32, 255 (2014). DOI: 10.1007/s10832-013-9883-z
  5. M.N. Danchevskaya, Yu.D. Ivakin, S.N. Torbin, G.P. Muravieva, O.G. Ovchinnikova, J. Mater. Sci, 41, 1385 (2006). DOI: 10.1007/s10853-006-7411-0
  6. A.A. Kholodkova, M.N. Danchevskaya, Yu.D. Ivakin, A.D. Smirnov, S.G. Ponomarev, A.S. Fionov, V.V. Kolesov, Ceram Int., 45, 23050 (2019). DOI: 10.1016/j.ceramint.2019.07.353
  7. A.A. Kholodkova, M.N. Danchevskaya, Yu.D. Ivakin, G.P. Muravieva, A.S. Tyablikov, J. Supercrit. Fluids, 117, 194 (2016). DOI: 10.1016/j.supflu.2016.06.018
  8. V.A. Kreisberg, Yu.D. Ivakin, M.N. Danchevskaya, J. Eur. Ceram. Soc., 39, 508 (2019). DOI: 10.1016/j.jeurceramsoc.2018.09.031
  9. A.A. Kholodkova, S.G. Ponomarev, A.D. Smirnov, Yu.D. Ivakin, M.N. Danchevskaya, IOP Conf. Ser.: Mater. Sci. Eng., 447, 012074 (2018). DOI: 10.1088/1757-899X/447/1/012074
  10. W. Chen, F. Wang, K. Yan, Y. Zhang, D. Wu, Ceram. Int., 45, 4880 (2019). DOI: 10.1016/j.ceramint.2018.11.185
  11. L. Zhang, T. Wang, J. Sun, X. Chen, X. Hong, P. Zhou, J. Bai, J. Micromech. Mol. Phys., 5, 2050011 (2020). DOI: 10.1142/S2424913020500113
  12. A. Smirnov, S. Chugunov, A. Kholodkova, M. Isachenkov, A. Tikhonov, O. Dubinin, I. Shishkovsky, Materials, 15, 960 (2022). DOI: 10.3390/ma15030960
  13. A. Vaitkus, A. Merkys, S. Gravzulis, J. Appl. Crystallogr., 54, 661 (2021). DOI: 10.1107/S1600576720016532
  14. J. Ryu, J.-J. Choi, B.-D. Hahn, D.-S. Park, W.-H. Yoon, K.-Y. Kim, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54, 2510 (2007). DOI: 10.1109/TUFFC.2007.569
  15. B. Ponraj, K.B.R. Varma, Integr. Ferroelectrics, 176, 257 (2016). DOI: 10.1080/10584587.2016.1252659
  16. P.D. Gio, T.T. Bau, N.V. Hoai, N.Q. Nam, J. Mater. Sci Chem. Eng., 8, 1 (2020). DOI: 10.4236/msce.2020.87001

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.