Mechanism of sequential switching of current filaments in an avalanche S-diode
Prudaev I. A. 1, Kopyev V. V. 1, Oleinik V. L. 1, Zemlyakov V. E. 2
1Tomsk State University, Tomsk, Russia
2National Research University of Electronic Technology, Zelenograd, Moscow, Russia
Email: funcelab@gmail.com, viktor.kopev@gmail.com, dozorx777@gmail.com, vzml@rambler.ru

PDF
The paper presents the results of a study of a sequential switching of current filaments in an avalanche S-diode with deep iron centers. It has been experimentally shown that at a high repetition rate (100 kHz), the current filaments are distributed over the area of the electron-hole junction more uniformly compared to switching at a low frequency (100 Hz). In this case, the switching voltage at the first switching event of the avalanche S-diode is always higher than at the second one. To analyze the results, a numerical experiment on the formation of a locally heated region with an increased concentration of nonequilibrium carriers was proposed. Simulation of the dynamics of carrier redistribution under conditions of nonuniform heating of the S-diode allows one to propose a new mechanism for sequential switching of current filaments. In this mechanism, the recharging of deep centers in the vicinity of each previous current filament sets the conditions for the formation of each subsequent switching channel. Keywords: thermal conductivity, gallium arsenide, deep centers, current filament.
  1. I.A. Prudaev, V.L. Oleinik, T.E. Smirnova, V.V. Kopyev, M.G. Verkholetov, E.V. Balzovsky, O.P. Tolbanov. IEEE Trans. Electron Dev., 65 (8), 3339 (2018). DOI: 10.1109/TED.2018.2845543
  2. I.A. Prudaev, S.N. Vainshtein, M.G. Verkholetov, V.L. Oleinik, V.V. Kopyev. IEEE Trans. Electron Dev., 68 (1), 57 (2021). DOI: 10.1109/TED.2020.3039213
  3. I.A. Prudaev, S.N. Vainshtein, V.V. Kopyev, V.L. Oleynik, S.N. Marochkin. IEEE Electron Dev. Lett., 43 (1), 100 (2022). DOI: 10.1109/LED.2021.3130596
  4. S. Vainshtein, I. Prudaev, G. Duan, T. Rahkonen. Solid State Commun., 365, 115111 (2023). DOI: 10.1016/j.ssc.2023.115111
  5. S.N. Vainshtein, V.S. Yuferev, J.T. Kostamovaara. IEEE Trans. Electron Dev., 52 (12), 2760 (2005). DOI: 10.1109/TED.2005.859660
  6. S. Vainshtein, J. Kostamovaara, V. Yuferev, W. Knap, A. Fatimy, N. Diakonova. Phys. Rev. Lett., 99 (17), 176601 (2007). DOI: 10.1103/PhysRevLett.99.176601
  7. S.N. Vainshtein, V.S. Yuferev, J.T. Kostamovaara, M.M. Kulagina, H.T. Moilanen. IEEE Trans. Electron Dev., 57 (4), 733 (2010). DOI: 10.1109/TED.2010.2041281
  8. G.M. Loubriel, F.J. Zutavern, H.P. Hjalmarson, R.R. Gallegos, W.D. Helgeson, M.W. O'Malley. Appl. Phys. Lett., 64 (24), 3323 (1994). DOI: 10.1063/1.111266
  9. L. Hu, J. Su, Z. Ding, Q. Hao, X. Yuan. J. Appl. Phys., 115 (9), 094503 (2014). DOI: 10.1063/1.4866715
  10. Y. Sun, L. Hu, Y. Li, L. Zhu, X. Dang, Q. Hao, X. Li. J. Phys. D: Appl. Phys., 55, 215103 (2022). DOI: 10.1088/1361-6463/ac54d4
  11. V.I. Brylevskiy, I.A. Smirnova, A.V. Rozhkov, P.N. Brunkov, P.B. Rodin, I.V. Grekhov. IEEE Trans. Plasma Sci., 44 (10), 1941 (2016). DOI: 10.1109/TPS.2016.2561404
  12. V. Brylevskiy, N. Podolska, I. Smirnova, P. Rodin, I. Grekhov. Phys. Status Solidi B, 256 (6), 1800520 (2019). DOI: 10.1002/pssb.201800520
  13. M. Ivanov, A. Rozhkov, P. Rodin. Solid State Commun., 379, 115420 (2024). DOI: 10.1016/j.ssc.2023.115420
  14. I. Prudaev, V. Kopyev, V. Oleinik. Phys. Status Solidi B, 260, 2200446 (2023). DOI: 10.1002/pssb.202200446
  15. Version H-2013.03 (Synopsis Inc. Sentaurus Device User Guide, Mountain View, CA, 2013)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru