Effect of temperature on current through various recombination channels in GaAs solar cells with GaInAs quantum dots
Mintairov M. A.1, Evstropov V. V. 1, Mintairov S. A. 1, Salii R. A. 1, Nadtochiy A. M. 1, Kalyuzhnyy N. A.1
1Ioffe Institute, St. Petersburg, Russia
Email: mamint@mail.ioffe.ru

PDF
The influence of reducing carrier of thermal escape rate with temperature decreasing in various channels on the dark saturation current of a GaAs p-n junction with Ga0.8In0.2As quantum dots has been investigated. The dark saturation current has been calculated for temperatures ranging from 20 to 325 K. The calculation was based on the previously discovered current invariant, which determines the dependence of the saturation current on temperature and bandgap energy. The rates of recombination in various channels and their bandgaps were determined by photoluminescence spectra analysis. For various channels, characteristic temperatures were determined, below which thermal escape rate of carriers is practically absent. The saturation current calculation showed that, despite the change in the rate of recombination in different channels, it is determined only by the recombination in the channel with lower bandgap energy. Keywords: solar cell, saturation current, current invariant, efficiency.
  1. N.J. Ekins-Daukes, K.W.J. Barnham, J.P. Connolly, J.S. Roberts, J.C. Clark, G. Hill, M. Mazzer. Appl. Phys. Lett., 75 (26), 4195 (1999). DOI: 10.1063/1.125580
  2. B. Browne, J. Lacey, T. Tibbits, G. Bacchin, T.-C. Wu, J.Q. Liu, X. Chen, V. Rees, J. Tsai, J.-G. Werthen. AIP Conf. Proc., 1556, 3 (2013) p. 3. DOI: 10.1063/1.4822185
  3. D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, Y. Arakawa. Appl. Phys. Lett., 96 (20), 203507 (2010). DOI: 10.1063/1.3427392
  4. V. Popescu, G. Bester, M.C. Hanna, A.G. Norman, A. Zunger. Phys. Rev. B, 78 (20), 205321 (2008). DOI: 10.1103/PhysRevB.78.205321
  5. S.A. Mintairov, N.A. Kalyuzhnyy, V.M. Lantratov, M.V. Maximov, A.M. Nadtochiy, S. Rouvimov, A.E. Zhukov. Nanotechnology, 26 (38), 385202 (2015). DOI: 10.1088/0957-4484/26/38/385202
  6. M.A. Mintairov, V.V. Evstropov, S.A. Mintairov, A.M. Nadtochiy, M.V. Nahimovich, R.A. Salii, M.Z. Shvarts, N.A. Kalyuzhnyy. Appl. Phys. Exp., 13 (7), 075002 (2020). DOI: 10.35848/1882-0786/ab9318
  7. M.A. Mintairov, V.V. Evstropov, S. A. Mintairov, A.M. Nadtochii, R.A. Salii, M.Z. Shvarts, N.A. Kalyuzhnyi. Techn. Phys. Lett., 46 (6), 599 (2020). DOI: 10.1134/S106378502006022X
  8. K. Toprasertpong, H. Fugii, T. Thomas, M. Fuhrer, D. Alonso-Alvarez, D.J. Farrell, K. Watanabe, Y. Okada, N.J. Ekins-Daukens, M. Sugiyama, Y. Nakano. Progr. Photovolt.: Res. Appl., 24 (4), 533 (2016). DOI: 10.1002/pip.2585
  9. D.B. Bushnell, N.D. Tibbits, K.W.J. Barnham, G.P. Connolly, M. Mazzer, N.J. Ekins-Daukes, J.S. Roberts, G. Hill, R. Airey. J. Appl. Phys., 97 (12), 124908 (2005). DOI: 10.1063/1.1946908
  10. R. Kellenbenz, W. Guter, P. Kailuweit, E. Oliva, F. Dimroth. Proc. 8th Eur. Space Power Conf. (4-19 September 2008, Constance, Germany)
  11. N. Ekins-Daukes. Solar Energy Mater. Solar Cells, 68 (1), 71 (2001). DOI: 10.1016/S0927-0248(00)00346-9
  12. D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka. Appl. Phys. Lett., 96 (20), 203507 (2010). May, 2010. DOI: 10.1063/1.3427392
  13. S.M. Hubbard, C. Plourde, Z. Bittner, C.G. Bailey, M. Harris, T. Bald, M. Bennett, D.V. Forbes, R. Raffaelle. In 2010 35th IEEE Photovoltaic Specialists Conf. (July 2010) p. 001217. DOI: 10.1109/PVSC.2010.5614053
  14. C.G. Bailey, D.V. Forbes, R.P. Raffaelle, S.M. Hubbard. Appl. Phys. Lett., 98 (16), 163105 (2011). DOI: 10.1063/1.3580765
  15. M. Sugiyama, H. Fujii, T. Katoh, K. Toprasertpong, H. Sodabanlu, K. Watanabe, D. Alonso-Alvarez, N.J. Ekins-Daukes, Y. Nakano. Progr. Photovolt.: Res. Appl., 24 (12), 1606 (2016). DOI: 10.1002/pip.2769
  16. M.A. Mintairov, V.V. Evstropov, S.A. Mintairov, M.V. Nakhimovich, M.Z. Shvarts, N.A. Kalyuzhnyy. AIP Conf. Proc., 2298, 020007 (2020). DOI: 10.1063/5.0033763
  17. R.A. Salii, S.A. Mintairov, A.M. Nadtochiy, V.N. Nevedomskii, M.Z. Shvarts, N.A. Kalyuzhnyy. Semiconductors, 54 (10), 1267 (2020). DOI: 10.1134/S1063782620100255
  18. M.A. Mintairov, V.V. Evstropov, S.A. Mintairov, M.V. Nakhimovich, M.Z. Shvarts, N.A. Kalyuzhnyy. J. Phys.: Conf. Ser., 1697 (1), 012170 (2020). Dec. 2020. DOI: 10.1088/1742-6596/1697/1/012170
  19. W. Shockley. The theory of p-n junctions in semiconductors and p-n junction transistors (Bell System Techn. J., July 1949) p. 435

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru