Band gap variation of 2D CdTe slabs in the sphalerite phase and in the phase with boundary chalcogen atoms
Gavrikov A.A.1, Kuznetsov V.G.2,1, Kolobov A.V.1
1Herzen State Pedagogical University of Russia, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
Email: agavrikov@herzen.spb.ru
Reducing the thickness of semiconductors to the limit of a few monolayers often leads to emergence of new properties. In this work, the thickness dependence of the band gap of cadmium telluride slabs in both the sphalerite phase and in the inverted phase is studied using the density functional theory method. The sphalerite phase is characterized by Cd-Te-Cd-Te alternating atomic planes, while in the inverted phase the order of planes is Te-Cd-Cd-Te. It is shown that using slabs with a thickness of one to several monolayers variable-gap structures can be fabricated. Keywords: cadmium telluride, 2D materials, bandgap variation, monolayer.
- K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz. Phys. Rev. Lett., 105, 136805 (2010). DOI: 10.1103/PhysRevLett.105.136805
- A. Kolobov, J. Tominaga. Two-Dimensional Transition-Metal Dichalcogenides (Springer International Publishing, Cham, Switzerland, 2016) p. 355
- D.A. Bandurin, A.V. Tyurnina, G.L. Yu, A. Mishchenko, V. Zolyomi, S.V. Morozov, R.K. Kumar, R.V. Gorbachev, Z.R. Kudrynskyi, S. Pezzini, Z.D. Kovalyuk, U. Zeitler, K.S. Novoselov, A. Patan\`e, L. Eaves, I.V. Grigorieva, V.I. Faiko, A.K. Geim, Y. Cao. Nature Nanotechnol., 12, 223 (2017). DOI: 10.1038/nnano.2016.242
- H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang. Physics, 5, 438 (2009). DOI: 10.1038/nphys1270
- A.V. Kolobov, V.G. Kuznetsov, P. Fons, Y. Saito, D.I. Elets, B. Hyot. Phys. Status Solidi RRL, 15 (11), 2100358 (2021). DOI: 10.1002/pssr.202100358
- B.T. Diroll, B. Guzelturk, H. Po, C. Dabard, N. Fu, L. Makke, E. Lhuillier, S. Ithurria. Chem. Rev., 123 (7), 3543 (2023). DOI: 10.1021/acs.chemrev.2c00436
- R.B. Vasiliev, E.P. Lazareva, D.A. Karlova, A.V. Garshev, Y. Yao, T. Kuroda, A.M. Gaskov, K. Sakoda. Chem. Mater., 30 (5), 1710 (2018). DOI: 10.1021/acs.chemmater.7b05324
- R.B. Vasiliev, A.I. Lebedev, E.P. Lazareva, N.N. Shlenskaya, V.B. Zaytsev, A.G. Vitukhnovsky, Y. Yao, K. Sakoda. Phys. Rev. B, 95, 165414 (2017). DOI: 10.1103/PhysRevB.95.165414
- M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne. J. Phys. Condens. Matter, 14, 2717 (2002). DOI: 10.1088/0953-8984/14/11/301
- S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne. Z. Krist. Cryst. Mater., 220, 567 (2005). DOI: 10.1524/zkri.220.5.567.65075
- J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett., 77, 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865
- S. Grimme. J. Comput. Chem., 27, 1787 (2006). DOI: 10.1002/jcc.20495
- J.P. Perdew. Int. J. Quant. Chem. 28, 497 (2009). DOI: 10.1002/qua.560280846
- J.P. Perdew, A. Zunger. Phys. Rev. B, 23, 5048 (1981). DOI: 10.1103/PhysRevB.23.5048
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.