Spatial inhomogeneity of impact-ionization switching process in power Si diode
Lyubutin S. K.1, Patrakov V. E. 1,2, Rukin S. N. 1, Slovikovsky B. G. 1, Tsyranov S. N. 1
1Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
2Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
Email: lageres@mail.ru, ganimed323@mail.ru, rukin@iep.uran.ru

PDF
Voltage drop process in power Si diode switched to a conducting state by an impact-ionization wave, which is excited by overvoltage pulse with a subnanosecond rise time, has been investigated. In experiments, a reverse voltage pulse was applied to a diode with a diameter of 6 mm without preliminary reverse bias, which provided the average rate of voltage rise across the diode dU/dt in the range of 1-10 kV/ns. Numerical simulations showed that calculated and experimentally observed voltage waveforms are in good quantitative agreement in the case when an active area of the structure Sa, through which a switching current flows, increases with dU/dt value increasing. It was shown that at dU/dt<2 kV/ns the active area tends to zero, and at dU/dt>10 kV/ns it approaches the total area of the structure. Comparison with the results of similar studies shows that the increase in the active area of the structure with the increase in the Sa value does not depend on the material of the structure (silicon and gallium arsenide), the number of layers in the semiconductor structure (diodes and thyristors), and also on the value of the initial bias voltage. Keywords: impact ionisation, voltage rise rate, active area, switching time.
  1. I.V. Grekhov, A.F. Kardo-Sysoev. Pisma v ZhTF, 5, 950 (1979). (in Russian)
  2. A.F. Kardo-Sysoev. New power semiconductor devices for generation of nano and subnanosecond pulses, in Ultra-Wideband Radar Technology, ed. by J.D. Taylor (CRC Press, Boca Raton, 2001)
  3. M. Levinshtein, J. Kostamovaara, S. Vainshtein. Breakdown Phenomena in Semiconductors and Semiconductor Devices (World Scientific, London, 2005)
  4. I.V. Grekhov, S.V. Korotkov, P.V. Rodin. IEEE Trans. Plasma Sci., 36 (2), 378 (2008)
  5. I.V. Grekhov. IEEE Trans. Plasma Sci., 38 (5), 1118 (2010)
  6. V.I. Brylevskiy, I.A. Smirnova, A.V. Rozhkov, P.N. Brunkov, P.B. Rodin, I.V. Grekhov. IEEE Trans. Plasma Sci., 44 (10), 1941 (2016)
  7. B.C. DeLoach D.L. Sharfetter. IEEE Trans. Electron Dev., 17 (1), 9--21 (1970)
  8. S.N. Vainshtein, Yu.V. Zhilyaev, M.E. Levinshtein. Pis'ma ZhTF, 14 (16), 1526 (1988) (in Russian)
  9. I.V. Grekhov, V.M. Efanov. Pis'ma ZhTF, 16 (17), 9 (1990). (in Russian)
  10. A.F. Kardo-Sysoev, M.V. Popova. FTP, 30 (5), 803 (1996). (in Russian)
  11. A.M. Minarsky, P.B. Rodin. Solid-State Electron., 41 (6), 813 (1997)
  12. A.S. Kyuregyan. Pis'ma ZhTF, 31 (24), 11 (2005). (in Russian)
  13. P.B. Rodin, A.M. Minarsky, I.V. Grekhov. Pis'ma ZhTF, 38 (11), 78 (2012). (in Russian)
  14. M.S. Ivanov, N.I. Podolska, P.B. Rodin. J. Phys.: Conf. Ser., 816, 012033 (2017)
  15. P.B. Rodin, M.S. Ivanov. J. Appl. Phys., 127, 044504 (2020)
  16. M.S. Ivanov, V.I. Brylevskiy, I.A. Smirnova, P.B. Rodin. J. Appl. Phys., 131, 014502 (2022)
  17. A.I. Gusev, S.K. Lubutin, S.N. Rukin, S.N. Tsyranov. FTP, 50 (3), 398 (2016)
  18. A.I. Gusev, S.K. Lubutin, S.N. Rukin, B.G. Slovikovsky, S.N. Tsyranov. PTE, 4, 95 (2017). (in Russian)
  19. A.I. Gusev, S.K. Lubutin, S.N. Rukin, S.N. Tsyranov. FTP, 51 (5), 680 (2017). (in Russian)
  20. A. Gusev, S. Lyubutin, S. Rukin, B. Slovikovsky, S. Tsyranov, O. Perminova. Semicond. Sci. Technol., 33, 115012 (2018)
  21. A.I. Gusev, S.K. Lyubutin, V.E. Patrakov, S.N. Rukin, B.G. Slovikovsky, M.J. Barnes, T. Kramer, V. Senaj. J. Instrumentation, 14 (10), 10006 (2019)
  22. A.S. Kesar, A. Raizman, G. Atar, S. Zoran, S. Gleizer, Y. Krasik, D. Cohen-Elias. Appl. Phys. Lett., 117, 013501 (2020)
  23. A.I. Gusev, S.K. Lubutin, S.N. Rukin, B.G. Slovikovsky, S.N. Tsyranov. FTP, 48 (8), 1095 (2014). (in Russian)
  24. S.N. Rukin. Rev. Sci. Instrum., 91, 011501 (2020)
  25. M.S. Ivanov, V.I. Brylevskii, P.B. Rodin. Pis'ma ZhTF, 47 (13), 32 (2021). (in Russian)
  26. S.K. Lyubutin, S.N. Rukin, B.G. Slovikovsky, S.N. Tsyranov. FTP, 46 (4), 535 (2012). (in Russian)
  27. P. Rodin, U. Ebert, W. Hundsdorfer, I.V. Grekhov. J. Appl. Phys., 92, 1971 (2002). 28]E.V. Astrova, V.B. Voronkov, V.A. Kozlov, A.A. Lebedev. Semicond. Sci. Technol., 13, 488 (1998)
  28. P. Rodin, A. Rodina, I. Grekhov. J. Appl. Phys., 98, 094506 (2005)
  29. V.I. Brylevskiy, I.A. Smirnova, A.A. Gutkin, P.N. Brunkov, P.B. Rodin, I.V. Grekhov. J. Appl. Phys., 122 (18), 185701 (2017)
  30. S.N. Tsyranov, S.N. Rukin. Proc. 15th Int. Symp. High Current Electronics (Tomsk, Russia, 2008) p. 288
  31. I.V. Grekhov, A.F. Kardo-Sysoev, L.S. Kostina. Pis'ma ZhTF, 5, 961 (1979). (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru