Epitaxial heterostructures of the active region for near-infrared LEDs
Salii R. A. 1, Mintairov S. A. 1, Nadtochiy A. M. 1, Kalyuzhnyy N. A. 1
1Ioffe Institute, St. Petersburg, Russia
Email: r.saliy@mail.ioffe.ru, mintairov@scell.ioffe.ru, nickk@mail.ioffe.ru

PDF
The influence of AlGaAsP, GaAsP and AlGaAs/GaAsP compensating layers on the optical quality of the active area based on InGaAs/GaAs quantum wells for LEDs emitting at a wavelength of 940 nm has been studied. Heterostructures with multiple quantum wells have been grown by MOVPE technique using various approaches to compensating structural stresses. An increase in photoluminescence intensity by more than 32% was demonstrated when using AlGaAs/GaAsP compensating layers. Keywords: quantum wells, LED, InGaAs, epitaxy, heterostructures.
  1. M. Vasilopoulou, A. Fakharuddin, F. Pelayo Garci a de Arquer, D.G. Georgiadou, H. Kim, A.R. M. Yusoff, F. Gao, M.K. Nazeruddin, H.J. Bolink, E.H. Sargent. Nature Photonics, 15, 656 (2021). DOI: 10.1038/s41566-021-00855-2
  2. H.-J. Lee, G.-H. Park, J.-S. So, C.-H. Lee, J.-H. Kim, L.-K. Kwac. Infr. Phys. Technol., 118, (2021). DOI: 10.1016/j.infrared.2021.103879
  3. A.V. Malevskaya, N.A. Kalyuzhnyy, D.A. Malevskii, S.A. Mintairov, A.M. Nadtochiy, M.V. Nakhimovich, F.Y. Soldatenkov, M.Z. Shvarts, V.M. Andreev, Semiconductors, 55 (8), 686 (2021). DOI: 10.61011/FTP.2023.07.56785.5169C
  4. S.-D. Kim, H. Lee, J.S. Harris. J. Electrochem. Soc., 142 (5), 1667 (1995). DOI: 10.1149/1.2048636
  5. Y. Yu, X. Qin, B. Huang, J. Weia, H. Zhou, J. Pan, W. Chen, Yun Qi, X. Zhang, Z. Ren. Vacuum, 69, 489 (2003). DOI: 10.1016/S0042-207X(02)00560-2
  6. D.-K. Kim, H.-J. Lee. J. Nanosci. Nanotechnol., 18 (3), 2014 (2018). DOI: 10.1166/jnn.2018.14952
  7. D.P. Xu, M. D'Souza, J.C. Shin, L.J. Mawst, D. Botez. J. Cryst. Growth, 310, 2370 (2008). DOI: 10.1016/j.jcrysgro.2007.11.218
  8. C.G. Van de Walle. Phys. Rev., 39 (3), 1871 (1989). DOI: 10.1103/PhysRevB.39.1871
  9. M.E. Rudinsky, S.Yu. Karpov, H. Lipsanen, A.E. Romanov. Mat. Phys. \& Mechanics, 24 (3), 278 (2015). DOI: 10.1134/S1063782613090054
  10. L. Redaelli, A. Mukhtarova, S. Valdueza-Felip, A. Ajay, C. Bougerol, C. Himwas, J. Faure-Vincent, C. Durand, J. Eymery, E. Monroy. Appl. Phys. Lett., 105 (13), 131105 (2014). DOI: 10.1063/1.4896679
  11. N.J. Ekins-Daukes, K. Kawaguchi, J. Zhang. Cryst. Growth Des., 2 (4), 287 (2002). DOI: 10.1021/cg025502y
  12. C.G. Bailey, S.M. Hubbard, D.V. Forbes, R.P. Raffaelle. Appl. Phys. Lett., 95 (20), 203110 (2009). DOI: 10.1063/1.3264967
  13. W.-C. An, H.-G. Kim, L.-K. Kwac, J.-S. So, H.-J. Lee. J. Nanosci. Nanotechnol., 19, 2224 (2019). DOI: 10.1166/jnn.2019.15974

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru