Fabrication and study of the properties of GaAs layers doped with bismuth
Zdoroveyshchev D. A. 1, Vikhrova O. V. 1, Danilov Yu. A. 1, Lesnikov V. P. 1, Nezhdanov A. V. 1, Parafin A. E. 2, Plankina S. M. 1
1Lobachevsky State University, Nizhny Novgorod, Russia
2Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: danielzdoroveishev@yandex.ru, vikhrova@nifti.unn.ru, danilov@nifti.unn.ru, nezhdanov@phys.unn.ru, parafin@ipmras.ru, plankina@phys.unn.ru

PDF
Pulsed laser deposition in vacuum at 220oC of GaAs layers heavily doped with Mn and/or Bi has been used to form nanostructures on i-GaAs (100) substrates. It is shown that, for the electrical activation of manganese, it is expedient to use subsequent annealing with an excimer laser pulse with a wavelength of 248 nm and a duration of 30 ns. The structures show an anomalous Hall effect with a hysteresis loop on the magnetic field dependence up to a Curie temperature of about ~ 70 K. Negative magnetoresistance is observed up to temperatures of ~150 K. Bismuth does not prevent the activation of Mn atoms during annealing and contributes to an increase in the coercive field of the GaMnAs ferromagnetic semiconductor. Keywords: gallium arsenide, pulsed laser deposition, Bi and Mn doping, pulsed laser annealing, ferromagnetic properties.
  1. A.R. Mohmad, F. Bastiman, C.J. Hunter, R.D. Richards, S.J. Sweeney, J.S. Ng, J.P.R. David, B.Y. Majlis. Phys. Status Solidi B, 251, 1276 (2014)
  2. B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E.C. Young, T. Tiedje. Phys. Rev. Lett., 97, 067205 (2006)
  3. R.N. Kini, A. Mascarenhas. In: Bismuth-Containing Compounds (Springer Series in Materials Science), 186, 181 (2013)
  4. K. Alberi, B. Fluegel, D.A. Beaton, M. Steger, S.A. Crooker, A. Mascarenhas. Phys. Rev. Mater., 2, 114603 (2018)
  5. N. Elayech, H. Fitouri, Y. Essouda, A. Rebey, B. El Jani. Phys. Status Solidi C, 20, 138 (2015)
  6. J. Sadowski, A. Kaleta, S. Kryvyi, D. Janaszko, B. Kurowska, M. Bilska, T. Wojciechowski, J.Z. Domagala, A.M. Sanchez, S. Kret. Sci. Rep., 12, 6007 (2022)
  7. J. Veletas, T. Hepp, K. Volz, S. Chatterjee. J. Appl. Phys., 126, 135705 (2019)
  8. B.N. Zvonkov, I.A. Karpovich, N.V. Baidus, D.O. Filatov, S.V. Morozov. FTP, 35 (1), 92 (2001). (in Russian)
  9. T. Andrearczyk, K. Levchenko, J. Sadowski, K. Gas, A. Avdonin, J. Wrobel, T. Figielski, M. Sawicki, T. Wosinski. Materials, 16, 788 (2023)
  10. O.V. Vikhrova, Yu.A. Danilov, D.A. Zdoroveishchev, I.L. Kalentyeva, A.V. Kudrin, V.P. Lesnikov, A.V. Nejdanov, A.E. Parafin. FTT, 65 (5), 754 (2023). (in Russian)
  11. T. Dietl, H. Ohno. Rev. Mod. Phys., 86, 187 (2014)
  12. H. Akinaga, J. De Boeck, G. Borghs, S. Miyanishi, A. Asamitsu, W. Van Roy, Y. Tomioka, L.H. Kuo. Appl. Phys. Lett., 72, 3368 (1998)
  13. S. Zhou. J. Phys. D: Appl. Phys., 48, 263001 (2015)
  14. J.S. Blakemore. J. Appl. Phys., 53, R123 (1982)
  15. K. Wan, J.F. Young. Phys. Rev. B, 41 (15), 10772 (1990)
  16. W. Limmer, M. Glunk, S. Mascheck, A. Koeder, D. Klarer, W. Schoch, K. Thonke, R. Sauer, A. Waag. Phys. Rev. B, 66, 205209 (2002)
  17. J.A. Steele, R.A. Lewis, M. Henini, O.M. Lemine, D. Fan, Yu.I. Mazur, V.G. Dorogan, P.C. Grant, S.-Q. Yu, G.J. Salamo. Opt. Express, 22 (10), 11680 (2014)
  18. M.J. Seong, S. Francoeur, S. Yoon, A. Mascarenhas, S. Tixier, M. Adamcyk, T. Tiedje. Superlattices Microstruct., 37 (11), 394 (2005)
  19. O.V. Vikhrova, Yu.A. Danilov, B.N. Calls, A.V. Zdoroveishchev, A.V. Kudrin, V.P. Lesnikov, A.V. Nejdanov, S.A. Pavlov, A.E. Parafin, I.Yu. Pashenkin, S.M. Plankina. FTT, 59 (11), 2130 (2017)
  20. T. Andrearczyk, K. Levchenko, J. Sadowski, J.Z. Domagala, A. Kaleta, P. Dluzewski, J. Wrobel, T. Figielski, T. Wosinski. Materials, 13, 5507 (2020)
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru