Influence of hydrostatic pressure on the structural, electronic, and optical properties of BxAlyGa1-x-yN quaternary alloys: a first-principle study
Bouazza Abdelkader1, Larbi M'hamed2
1
2
Email: abdelkader.bouazza@univ-tiaret.dz

PDF
To investigate the effects of Al-doping on the structural, electronic, and optical properties of BxAlyGa1-x-yN quaternary alloys in the zinc-blende (ZB) phase, first-principle total-energy calculations were performed using the full-potential linearized augmented plane wave (FP-LAPW) technique as implemented in the WIEN2k code, which is based on density functional theory (DFT). Different exchange correlation energy approximations were used, such as the local density approximation (LDA) and the generalized gradient approximation within the Perdew-Burke-Ernzerh (PBE-GGA) parameterization. We also used the Tran-Blaha modified Becke-Johnson (TB-mBJ) approach to determine the band structures with great precision. Under hydrostatic pressure (P=0 to 30 GPa), the pressure dependency of the BxAlyGa1-x-yN with different concentrations (x,y)=[(0.25,0.25), (0.25, 0.50), and (0.50, 0.25)] for electronic and B0.50Al0.25Ga0.25N for optical properties was also investigated. In addition, we discovered that BxAlyGa1-x-yN retains its direct band-gap energy semiconductor. Using this value range, we can get the appropriate optical characteristics for several technical applications. When these quaternary alloys are subjected to hydrostatic pressure, we notice that all energy gaps widen as the pressure rises, while the nature of the fundamental gap remains unchanged for all quaternary compounds. Keywords: density functional theory (DFT), electronic band-structure, optical properties, semiconductors, quaternary alloys.
  1. Mh. Larbi, A. Bentouaf, A. Bouazza, B. Mbarek, Aissa First principal investigation of structural, electronic and optical properties of quaternary BxInyGa1-x-yN compounds. In: SPIN, 2020. World Scientific. https://doi.org/10.1142/S2010324720500241
  2. Mh. Larbi, Riane, Rabah, Matar, F. Samir, A. Abdiche, M. Djermouni, M. Ameri, N. Merabet, A. Oualdine. Zeitschrift fur Naturforschung B, 71 (2), 125 (2016). https://doi.org/10.1515/znb-2015-0149
  3. B. Bencherif, A. Abdiche, R. Moussa, R. Khenata, Xiaotian Wang. Pressure effect on structural, electronic optical and thermodynamic properties of cubic AlxIn1-xP: a first-principles study, Molecular Phys., 118, 3 (2020). https://doi.org/10.1080/00268976.2019.1608380
  4. M. Guemou, M. Khelil, A. Abdiche. Phys. Solid State, 62 (10), 1815 (2020). https://doi.org/10.1134/S106378342010011X
  5. A. Oualdine, A. Abdiche, R. Khenata, XChinese Wang. J. Phys., 60, 528 (2019). https://doi.org/10.1016/j.cjph.2019.05.033
  6. S.-H. Jhi, J. Ihm. Phys. Status Solidi B, 191, 387 (1995). https://doi.org/10.1002/pssb.2221910213
  7. A. Bouazza. Deposition of Thin Films Materials used in Modern Photovoltaic Cells. Int. J. Thin Film Sci.Technol., 11 (3), 313 (2022). https://doi.org/10.18576/ijtfst/110308
  8. S.E.C. Refas, A. Bouazza, Y. Belhadji. Monte Carlo Meth. Appl., 27 (4), 373 (2021). https://doi.org/10.1515/mcma-2021-2094
  9. A. Bouazza. Surf. Investigation: X-ray, Synchrotron and Neutron Techn., 16 (6), 1221 (2022). https://doi.org/10.1134/S1027451022060283
  10. A. Bouazza. Sputtering of semiconductors, conductors, and dielectrics for the realization of electronics components thin-films. Int. J. Thin Film Sci. Technol., 11 (2), 225 (2022). https://doi.org/10.18576/ijtfst/110210
  11. A. Bouazza. 3D Visualization of the Effect of Plasma Temperature on Thin-Film Morphology. Bull. Lebedev Phys. Inst., 50 (1) 7-13 (2023). https://doi.org/10.1134/S1027451022060283
  12. A. Bouazza. Investigation using Monte-Carlo codes simulations for the impact of temperatures and high pressures on thin films quality. Rev. Mex. Fis., 69 (2), 021501 1-12 (2023). https://doi.org/10.31349/RevMexFis.69.021501
  13. A. Bouazza. "Revealing the role of vacuum chamber parameters on the pathways leading to substrate deposition by ejected atoms", International Journal of Thin Film Science and Technology, vol. 12, no. 3, pp. 159-162 (2023). https://doi.org/10.18576/ijtfst/120301
  14. A. Bouazza. "An Investigation by Monte Carlo Simulation of the Sputtering Process in Plasma". J. Surf. Investig. vol. 17, no. 5, 1172-1179 (2023). https://doi.org/10.1134/S1027451023050361
  15. M. Koulali, A. Bouazza. "Enhancing the Sputtering Process with Plasma-Assisted Electrical Discharge for Thin Film Fabrication in Advanced Applications", International Journal of Thin Film Science and Technology, vol. 13, no. 1, pp. 13-16 (2024). https://doi.org/10.18576/ijtfst/130102
  16. H. Bouafia, B. Sahli, M. Bousmaha, B. Djebour, A. Dorbane, S. Mokrane, S. Hiadsi. Solid State Sci., 118, 106677 (2021). https://doi.org/10.1016/j.solidstatesciences.2021.106677
  17. M. Bendjemai, H. Bouafia, B. Sahli, A. Dorhane, S. Uv gur, G. Uv gur, S. Mokrane. Phys. B: Phys. Condens. Matter, 599, 412463 (2020). https://doi.org/10.1016/j.physb.2020.412463
  18. B. Sana, H. Bouafia, M. Hassan, A. Bouaza, B. Sahli, B. Djebour, S. Hiadsi, B. Abidri. Optik, 168, 196 (2018). https://doi.org/10.1016/j.ijleo.2018.04.064
  19. J.L. He, E.D. Wu, H.T. Wang, R.P. Liu, Y.J. Tian. Phys. Rev. Lett., 94, 015504 (2005). https://doi.org/10.1103/PhysRevLett.94.015504
  20. F.El Haj Hassan, H. Akbarzadeh, M. Zoaeter. J. Phys. Condens. Matter, 16, 293 (2004). https://doi.org/10.1088/0953-8984/16/3/009
  21. F. Tran, D. Koller, P. Blaha. Phys. Rev. B, 83, 195134 (2011). https://doi.org/10.1103/physrevb.86.134406
  22. C. Stampft, C.G. Van de Walle. Phys. Rev. B, 59, 5521 (1999). https://doi.org/10.1103/PhysRevB.59.5521
  23. G. Demol, T. Paulmier, D. Payan. J. Appl. Phys., 125, 025110-1 (2019). https://doi.org/10.1063/1.5066434
  24. R. Riane, R. Boussahl, Z. Zaoui, A. Hammerelaine, L. Matar. Solid State Sci., 11, 200 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.06.001
  25. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz. WIEN2K: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties, ed. by K. Schwarz ( Vienna University of Technology, Austria, 2001)
  26. J.P. Perdew, Y. Wang, Phys. Rev. B, 45 (23), 13244 (1992). https://doi.org/10.1103/PhysRevB.45.13244
  27. J.P. Perdew, A. Zunger. Phys. Rev. B, 23, 5048 (1981). https://doi.org/10.1103/PhysRevB.23.5048
  28. J.P. Perdew, K. Burke. Ernzerhof M77 (18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  29. F. Tran, P. Blaha. Phys. Rev. Lett., 102 (22), 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401
  30. D. Koller, F. Tran, P. Blaha. Phys. Rev. B, 85 (15), 155109 (2012). https://doi.org/10.1103/PhysRevB.85.155109
  31. F. Bassani, M. Yoshimine. Phys. Rev., 130 (1), 20 (1963). https://doi.org/10.1103/PhysRev.130.20
  32. A.R. Denton, N.W. Ashcrof. Phys. Rev. A, 43 (6), 3161 (1991). https://doi.org/10.1103/PhysRevA.43.3161
  33. K. Kim, S. Limpijumnong, W.R.L. Lambrecht, B. Segall, F.A. Ponce, T.D. Moustakas, I. Akasaki, B.A. Monemar
  34. V.A. Fomichev, M.A. Rumsh. J. Phys. Chem. Sol., 29 (6), 1015 (1968). https://doi.org/10.1016/0022-3697(68)90237-0
  35. Popescu, Voicu, Alex Zunger. Phys. Rev. Lett., 104 (23), 236403 (2010). https://doi.org/10.1103/PhysRevLett.104.236403
  36. S.A. Korba, H. Meradji, S. Ghemid, B. Bouhafs. Comp. Mater. Sci., 44 (4), 1265 (2009). https://doi.org/10.1016/j.commatsci.2008.08.012
  37. M. ardona, Y.Y. eter. Fundamentals of semiconductors (Springer-Verlag, Berlin -Heidelberg, 2005) v. 619
  38. V. Lucarini, J.J. Saarinen, K.E. Peiponen, E.M. Vartiainen. Kramers-Kronig relations in optical materials research (Springer Science \& Business Media, 2005) v. 110
  39. A. Pourghazi, M. Dadsetani. Electronic and optical properties of BaTe, BaSe and BaS from first principles. Phys. B: Condens. Matter, 370 (1-4), 35 (2005). https://doi.org/10.1016/j.physb.2005.08.032
  40. S.M. Hosseini. Phys. B: Condens. Matter, 403 (10-11), 1907 (2008). https://doi.org/10.1016/j.physb.2007.10.370
  41. D. Lee, A.M. Johnson, J.E. Zucker, C.A. Burrus, R.D. Feldman, R.F. Austin. IEEE Phot. Technol. Lett., 4 (9), 949 (1992). https://doi.org/10.1109/68.157111
  42. T.S. Moss. Proc. Phys. Soc. Section B, 63 (3), 167 (1950). https://doi.org/10.1088/0370-1301/63/3/302
  43. P.J.L. Herve, L.K.J. Vandamme. J. Appl. Phys., 77 (10), 5476 (1995). https://doi.org/10.1063/1.359248
  44. N.M. Ravindra, S. Auluck, V.K. Srivastava. Phys. Status Solidi B, 93(2), K155 (1979). https://doi.org/10.1002/pssb.2220930257
  45. F. Wooten. Am. J. Phys., 41 (7), 939 (1973). https://doi.org/10.1119/1.1987434
  46. S. Adachi. Properties of group-iv, iii-v and ii-vi semiconductors (Wiley, West Sussex, UK, 2005).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru