Influence of hydrostatic pressure on the structural, electronic, and optical properties of BxAlyGa1-x-yN quaternary alloys: a first-principle study
Bouazza Abdelkader1, Larbi M'hamed2
1
2
Email: abdelkader.bouazza@univ-tiaret.dz
To investigate the effects of Al-doping on the structural, electronic, and optical properties of BxAlyGa1-x-yN quaternary alloys in the zinc-blende (ZB) phase, first-principle total-energy calculations were performed using the full-potential linearized augmented plane wave (FP-LAPW) technique as implemented in the WIEN2k code, which is based on density functional theory (DFT). Different exchange correlation energy approximations were used, such as the local density approximation (LDA) and the generalized gradient approximation within the Perdew-Burke-Ernzerh (PBE-GGA) parameterization. We also used the Tran-Blaha modified Becke-Johnson (TB-mBJ) approach to determine the band structures with great precision. Under hydrostatic pressure (P=0 to 30 GPa), the pressure dependency of the BxAlyGa1-x-yN with different concentrations (x,y)=[(0.25,0.25), (0.25, 0.50), and (0.50, 0.25)] for electronic and B0.50Al0.25Ga0.25N for optical properties was also investigated. In addition, we discovered that BxAlyGa1-x-yN retains its direct band-gap energy semiconductor. Using this value range, we can get the appropriate optical characteristics for several technical applications. When these quaternary alloys are subjected to hydrostatic pressure, we notice that all energy gaps widen as the pressure rises, while the nature of the fundamental gap remains unchanged for all quaternary compounds. Keywords: density functional theory (DFT), electronic band-structure, optical properties, semiconductors, quaternary alloys.
- Mh. Larbi, A. Bentouaf, A. Bouazza, B. Mbarek, Aissa First principal investigation of structural, electronic and optical properties of quaternary BxInyGa1-x-yN compounds. In: SPIN, 2020. World Scientific. https://doi.org/10.1142/S2010324720500241
- Mh. Larbi, Riane, Rabah, Matar, F. Samir, A. Abdiche, M. Djermouni, M. Ameri, N. Merabet, A. Oualdine. Zeitschrift fur Naturforschung B, 71 (2), 125 (2016). https://doi.org/10.1515/znb-2015-0149
- B. Bencherif, A. Abdiche, R. Moussa, R. Khenata, Xiaotian Wang. Pressure effect on structural, electronic optical and thermodynamic properties of cubic AlxIn1-xP: a first-principles study, Molecular Phys., 118, 3 (2020). https://doi.org/10.1080/00268976.2019.1608380
- M. Guemou, M. Khelil, A. Abdiche. Phys. Solid State, 62 (10), 1815 (2020). https://doi.org/10.1134/S106378342010011X
- A. Oualdine, A. Abdiche, R. Khenata, XChinese Wang. J. Phys., 60, 528 (2019). https://doi.org/10.1016/j.cjph.2019.05.033
- S.-H. Jhi, J. Ihm. Phys. Status Solidi B, 191, 387 (1995). https://doi.org/10.1002/pssb.2221910213
- A. Bouazza. Deposition of Thin Films Materials used in Modern Photovoltaic Cells. Int. J. Thin Film Sci.Technol., 11 (3), 313 (2022). https://doi.org/10.18576/ijtfst/110308
- S.E.C. Refas, A. Bouazza, Y. Belhadji. Monte Carlo Meth. Appl., 27 (4), 373 (2021). https://doi.org/10.1515/mcma-2021-2094
- A. Bouazza. Surf. Investigation: X-ray, Synchrotron and Neutron Techn., 16 (6), 1221 (2022). https://doi.org/10.1134/S1027451022060283
- A. Bouazza. Sputtering of semiconductors, conductors, and dielectrics for the realization of electronics components thin-films. Int. J. Thin Film Sci. Technol., 11 (2), 225 (2022). https://doi.org/10.18576/ijtfst/110210
- A. Bouazza. 3D Visualization of the Effect of Plasma Temperature on Thin-Film Morphology. Bull. Lebedev Phys. Inst., 50 (1) 7-13 (2023). https://doi.org/10.1134/S1027451022060283
- A. Bouazza. Investigation using Monte-Carlo codes simulations for the impact of temperatures and high pressures on thin films quality. Rev. Mex. Fis., 69 (2), 021501 1-12 (2023). https://doi.org/10.31349/RevMexFis.69.021501
- A. Bouazza. "Revealing the role of vacuum chamber parameters on the pathways leading to substrate deposition by ejected atoms", International Journal of Thin Film Science and Technology, vol. 12, no. 3, pp. 159-162 (2023). https://doi.org/10.18576/ijtfst/120301
- A. Bouazza. "An Investigation by Monte Carlo Simulation of the Sputtering Process in Plasma". J. Surf. Investig. vol. 17, no. 5, 1172-1179 (2023). https://doi.org/10.1134/S1027451023050361
- M. Koulali, A. Bouazza. "Enhancing the Sputtering Process with Plasma-Assisted Electrical Discharge for Thin Film Fabrication in Advanced Applications", International Journal of Thin Film Science and Technology, vol. 13, no. 1, pp. 13-16 (2024). https://doi.org/10.18576/ijtfst/130102
- H. Bouafia, B. Sahli, M. Bousmaha, B. Djebour, A. Dorbane, S. Mokrane, S. Hiadsi. Solid State Sci., 118, 106677 (2021). https://doi.org/10.1016/j.solidstatesciences.2021.106677
- M. Bendjemai, H. Bouafia, B. Sahli, A. Dorhane, S. Uv gur, G. Uv gur, S. Mokrane. Phys. B: Phys. Condens. Matter, 599, 412463 (2020). https://doi.org/10.1016/j.physb.2020.412463
- B. Sana, H. Bouafia, M. Hassan, A. Bouaza, B. Sahli, B. Djebour, S. Hiadsi, B. Abidri. Optik, 168, 196 (2018). https://doi.org/10.1016/j.ijleo.2018.04.064
- J.L. He, E.D. Wu, H.T. Wang, R.P. Liu, Y.J. Tian. Phys. Rev. Lett., 94, 015504 (2005). https://doi.org/10.1103/PhysRevLett.94.015504
- F.El Haj Hassan, H. Akbarzadeh, M. Zoaeter. J. Phys. Condens. Matter, 16, 293 (2004). https://doi.org/10.1088/0953-8984/16/3/009
- F. Tran, D. Koller, P. Blaha. Phys. Rev. B, 83, 195134 (2011). https://doi.org/10.1103/physrevb.86.134406
- C. Stampft, C.G. Van de Walle. Phys. Rev. B, 59, 5521 (1999). https://doi.org/10.1103/PhysRevB.59.5521
- G. Demol, T. Paulmier, D. Payan. J. Appl. Phys., 125, 025110-1 (2019). https://doi.org/10.1063/1.5066434
- R. Riane, R. Boussahl, Z. Zaoui, A. Hammerelaine, L. Matar. Solid State Sci., 11, 200 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.06.001
- P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz. WIEN2K: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties, ed. by K. Schwarz ( Vienna University of Technology, Austria, 2001)
- J.P. Perdew, Y. Wang, Phys. Rev. B, 45 (23), 13244 (1992). https://doi.org/10.1103/PhysRevB.45.13244
- J.P. Perdew, A. Zunger. Phys. Rev. B, 23, 5048 (1981). https://doi.org/10.1103/PhysRevB.23.5048
- J.P. Perdew, K. Burke. Ernzerhof M77 (18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- F. Tran, P. Blaha. Phys. Rev. Lett., 102 (22), 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401
- D. Koller, F. Tran, P. Blaha. Phys. Rev. B, 85 (15), 155109 (2012). https://doi.org/10.1103/PhysRevB.85.155109
- F. Bassani, M. Yoshimine. Phys. Rev., 130 (1), 20 (1963). https://doi.org/10.1103/PhysRev.130.20
- A.R. Denton, N.W. Ashcrof. Phys. Rev. A, 43 (6), 3161 (1991). https://doi.org/10.1103/PhysRevA.43.3161
- K. Kim, S. Limpijumnong, W.R.L. Lambrecht, B. Segall, F.A. Ponce, T.D. Moustakas, I. Akasaki, B.A. Monemar
- V.A. Fomichev, M.A. Rumsh. J. Phys. Chem. Sol., 29 (6), 1015 (1968). https://doi.org/10.1016/0022-3697(68)90237-0
- Popescu, Voicu, Alex Zunger. Phys. Rev. Lett., 104 (23), 236403 (2010). https://doi.org/10.1103/PhysRevLett.104.236403
- S.A. Korba, H. Meradji, S. Ghemid, B. Bouhafs. Comp. Mater. Sci., 44 (4), 1265 (2009). https://doi.org/10.1016/j.commatsci.2008.08.012
- M. ardona, Y.Y. eter. Fundamentals of semiconductors (Springer-Verlag, Berlin -Heidelberg, 2005) v. 619
- V. Lucarini, J.J. Saarinen, K.E. Peiponen, E.M. Vartiainen. Kramers-Kronig relations in optical materials research (Springer Science \& Business Media, 2005) v. 110
- A. Pourghazi, M. Dadsetani. Electronic and optical properties of BaTe, BaSe and BaS from first principles. Phys. B: Condens. Matter, 370 (1-4), 35 (2005). https://doi.org/10.1016/j.physb.2005.08.032
- S.M. Hosseini. Phys. B: Condens. Matter, 403 (10-11), 1907 (2008). https://doi.org/10.1016/j.physb.2007.10.370
- D. Lee, A.M. Johnson, J.E. Zucker, C.A. Burrus, R.D. Feldman, R.F. Austin. IEEE Phot. Technol. Lett., 4 (9), 949 (1992). https://doi.org/10.1109/68.157111
- T.S. Moss. Proc. Phys. Soc. Section B, 63 (3), 167 (1950). https://doi.org/10.1088/0370-1301/63/3/302
- P.J.L. Herve, L.K.J. Vandamme. J. Appl. Phys., 77 (10), 5476 (1995). https://doi.org/10.1063/1.359248
- N.M. Ravindra, S. Auluck, V.K. Srivastava. Phys. Status Solidi B, 93(2), K155 (1979). https://doi.org/10.1002/pssb.2220930257
- F. Wooten. Am. J. Phys., 41 (7), 939 (1973). https://doi.org/10.1119/1.1987434
- S. Adachi. Properties of group-iv, iii-v and ii-vi semiconductors (Wiley, West Sussex, UK, 2005).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.