Вышедшие номера
Ab initio исследования структурных, упругих и оптических свойств нецентросимметричных циклофосфатов
Журавлев Ю.Н.1
1Кемеровский государственный университет, Кемерово, Россия
Email: zhur@kemsu.ru
Поступила в редакцию: 13 сентября 2023 г.
В окончательной редакции: 23 сентября 2023 г.
Принята к печати: 25 сентября 2023 г.
Выставление онлайн: 1 ноября 2023 г.

Методами теории функционала плотности с использованием градиентных, гибридных, гибридных ближнего и дальнего действия функционалов, в том числе с учетом дисперсионной поправки, в базисе локализованных атомных орбиталей пакета CRYSTAL выполнены расчеты кристаллической и электронной структуры, упругих, пьзоэлектрических, линейных и нелинейных оптических свойств гексагональных KMg(PO3)3, KCa(PO3)3, RbCd(PO3)3, тригональных KZn(PO3)3, RbZn(PO3)3, тетрагонального K2Sr(PO3)4 циклофосфатов. Показано, что в гексагональных фосфатах атомы фтора и кислорода образуют кольца [P3O9], в тетрагональном - [P4O12], в тригональных - тримеры [P3O9], объединенные посредством атомов цинка в шестиугольные кольца вокруг атомов K(Rb). Вычислены зонные структуры и парциальные плотности электронных состояний и определена природа валентных и незанятых состояний. Рассчитаны упругие постоянные и модули упругости и сделаны выводы о пластичности или хрупкости материалов, а из компонентов пьезотензора - об их механоэлектрических свойствах. Получены коэффициенты генерации второй гармоники и двойного лучепреломления и проведена оценка применения в качестве нелинейно-оптических материалов. Ключевые слова: теория функционала плотности, двойные фосфаты, циклофосфаты, модуль упругости, ИК-спектры, пьезоэлектрические коэффициенты, нелинейные оптические свойства.
  1. C. Wu, G. Yang, M.G. Humphrey, C. Zhang. Coordinat. Chem. Rev. 375, 459 (2018). https://doi.org/10.1016/j.ccr.2018.02.017
  2. Y. Liu, Y. Shen, S. Zhao, J. Luo. Coordinat. Chem. Rev. 407, 213152 (2020). https://doi.org/10.1016/j.ccr.2019.213152
  3. R.A. Kumar. J. Chem. 2013, 154862 (2013). https://doi.org/10.1155/2013/154862
  4. D.A. Roberts. IEEE J. Quantum Electron. 28, 10, 2057 (1992). https://ieeexplore.ieee.org/document/159516
  5. B.I. Kidyarov. Crystals 7, 4, 109 (2017). https://doi.org/10.3390/cryst7040109
  6. T. Thao Tran, H. Yu, J.M. Rondlinelli, K.R. Poeppelmeier, P.S. Halasyamani. Chem. Mater. 28, 15, 5238 (2016). https://doi.org/10.1021/acs.chemmater.6b02366
  7. W. Wang, D. Mei, S. Wen, J. Wang, Y. Wu. Chin. Chem. Lett. 33, 5, 2301 (2022). https://doi.org/10.1016/j.cclet.2021.11.089
  8. И.В. Никифоров, Д.В. Дейнеко, И.Ф. Дускаев. ФТТ 62, 5, 766 (2020). DOI: 10.21883/FTT.2020.05.49243.19M [I.V. Nikiforov, D.V. Deyneko, I.F. Duskaev. Phys. Solid State 62, 5, 860 (2020)]
  9. M. Mutailipu, K.R. Poeppelmeier, S. Pan. Chem. Rev. 121, 3, 1130 (2021). https://doi.org/10.1021/acs.chemrev.0c00796
  10. Q. Jing, G. Yang, J. Hou, M. Sun, H. Cao. J. Solid State Chem. 244, 69 (2016). https://doi.org/10.1016/j.jssc.2016.08.036
  11. X. Liu, P. Gong, Y. Yang, G. Song, Z. Lin. Coordinat. Chem. Rev. 400, 213045 (2019). https://doi.org/10.1016/j.ccr.2019.213045
  12. Y.-X. Song, L. Min, Y. Ning. Chinese J. Struct. Chem. 39, 12, 2148 (2020). DOI: 10.14102/j.cnki.0254-5861.2011-3028
  13. J. Dang, D. Mei, Y. Wu, Z. Lin. Coordinat. Chem. Rev. 431, 213692 (2021). https://doi.org/10.1016/j.ccr.2020.213692
  14. Z. Bai, L. Liu, D. Wang, C.-L. Hu, Z. Lin. Chem. Sci. 12, 11, 4014 (2021). DOI: 10.1039/d1sc00080b
  15. S.G. Zhao, P.F. Gong, S.Y. Luo, L. Bai, Z.S. Lin, C.M. Ji, T.L. Chen, M.C. Hong, J.H. Luo. J. Am. Chem. Soc. 136, 24, 8560 (2014). https://doi.org/10.1021/ja504319x
  16. Z. Bai, L. Liu, L. Zhang, Y. Huang, F. Yuan, Z. Lin. Chem. Commun. 55, 58, 8454 (2019). DOI: 10.1039/c9cc04192c
  17. L. Li, Y. Wang, B.H. Lei, S.J. Han, Z.H. Yang, P.K. Roeppelmeier, S.L. Pan. J. Am. Chem. Soc. 138, 29, 9101 (2016). https://doi.org/10.1021/jacs.6b06053
  18. L. Li, Y. Wang, B.-H. Lei, S. Han, Z. Yang, H. Li, S. Pan. J. Mater. Chem. C 5, 2, 269 (2017). DOI: 10.1039/c6tc04565k
  19. M. Wen, H.P. Wu, S.C. Cheng, J. Sun, Z.H. Yang, X.H. Wu, S.L. Pan. Inorg. Chem. Front. 6, 2, 504 (2019)
  20. N.E. Novikova, N.I. Sorokina, I.A. Verin, O.A. Alekseeva, E.I. Orlova, V.I. Voronkova, M. Tseitlin. Crystals 8, 7, 283 (2018). https://doi.org/10.3390/cryst8070283
  21. P. Yu, L.-M. Wu, L.-J. Zhou, L. Chen. J. Am. Chem. Soc. 136, 1, 480 (2014)
  22. M. Abudoureheman, X. Pan, S. Han, Y. Rouzhahong, Z. Yang, H. Wu, S. Pan. Inorg. Chem. 57, 12, 7372 (2018). https://doi.org/10.1021/acs.inorgchem.8b01017
  23. Z. Xie, X. Su, H. Ding, H. Li. J. Solid State Chem. 262, 313 (2018). https://doi.org/10.1016/j.jssc.2018.03.032
  24. T. Yu, L. Xiong, X. Liu, Y. Yang, Z. Lin, L. Wu, L. Chen. Cryst. Growth Design 21, 4, 2445 (2021). https://doi.org/10.1021/acs.cgd.1c00051
  25. M. Sandstrom, D. Bostrom. Acta Crystallographica E 60, Part 2, i15 (2004). DOI: https://doi.org/10.1107/S1600536804000303
  26. S. Wang, C. Xu, X. Qiao. Opt. Mater. 107, 110102 (2020). https://doi.org/10.1016/j.optmat.2020.110102
  27. D. Wei, H.J. Seo. J. Lumin. 229, 117644 (2021). https://doi.org/10.1016/j.jlumin.2020.117644
  28. R. Dovesi, A. Erba, R. Orlando, C.M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rerat, S. Casassa, J. Baima, S. Salustro, B. Kirtman. WIREs Comput. Mol. Sci. 8, 4, e1360 (2018). https://doi.org/10.1002/wcms.1360
  29. D. Vilela Oliveira, J. Laun, M.F. Peintinger, T. Bredow. J. Comput. Chem. 40, 27, 2364 (2019). https://doi.org/10.1002/jcc.26013
  30. J. Laun, D. Vilela Oliveira, T. Bredow. J. Comput. Chem. 39, 19, 1285 (2018). https://doi.org/10.1002/jcc.25195
  31. J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 18, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  32. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke. Phys. Rev. Lett. 100, 13, 136406 (2008); Erratum Phys. Rev. Lett. 102, 039902 (2009). https://doi.org/10.1103/PhysRevLett.100.136406
  33. A.D. Becke. J. Chem. Phys. 98, 7, 5648 (1993). https://doi.org/10.1063/1.464913
  34. C. Lee, W. Yang, R.G. Parr. Phys. Rev. B 37, 2, 785 (1988). https://doi.org/10.1103/PhysRevB.37.785
  35. C. Adamo, V. Barone. J. Chem. Phys. 110, 13, 6158 (1999). https://doi.org/10.1063/1.478522
  36. A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, G.E. Scuseria. J. Chem. Phys. 125, 22, 224106 (2006). https://doi.org/10.1063/1.2404663
  37. L. Schimka, J. Harl, G. Kresse. J. Chem. Phys. 134, 2, 024116 (2011). https://doi.org/10.1063/1.3524336
  38. E. Weintraub, T.M. Henderson, G.E. Scuseria. J. Chem. Theory Comput. 5, 4, 754 (2009). https://doi.org/10.1021/ct800530u
  39. N. Handy, T. Yanai, D. Tew. Chem. Phys. Lett. 393, 1-3, 51 (2004). https://doi.org/10.1016/j.cplett.2004.06.011
  40. R. Menchon, G. Colizzi, C. Johnston, F. Torresi, J. Lasave, S. Koval, J. Kohanoff, R. Migoni. Phys. Rev. B. 98, 10, 104108 (2018). https://doi.org/10.1103/PhysRevB.98.104108
  41. D.C. Langreth, M. Dion, H. Rydberg, E. Schroder, P. Hyldgaard, B.I. Lundqvist. Int. J. Quantum Chem. 101, 5, 599 (2005). https://doi.org/10.1002/qua.20315
  42. S. Grimme, A. Hansen, J.G. Brandenburg, C. Bannwarth. Chem. Rev. 116, 9, 5105 (2016). https://doi.org/10.1002/jcc.21759
  43. S. Grimme, S. Ehrlich, L. Goerigk. J. Comput. Chem. 32, 7, 1456 (2011). https://doi.org/10.1002/jcc.21759
  44. M. Ferrero, M. Rerat, R. Orlando, R. Dovesi. J. Chem. Phys. 128, 1, 014110 (2008). https://doi.org/10.1063/1.2817596
  45. R. Orlando, V. Lacivita, R. Bast, K. Ruud. J. Chem. Phys. 132, 24, 244106 (2010). https://doi.org/10.1063/1.3447387
  46. M. Ferrero, M. Rerat, B. Kirtman, R. Dovesi. J. Chem. Phys. 129, 24, 244110 (2008). https://doi.org/10.1063/1.3043366
  47. M. Ferrero, B. Civalleri, M. Rerat, R. Orlando, R. Dovesi. J. Chem. Phys. 131, 21, 214704 (2009). https://doi.org/10.1063/1.3267861
  48. H.J. Monkhorst, J.D. Pack. Phys. Rev. B 13, 12, 5188 (1976)
  49. Ю.Н. Журавлев. ФТТ 64, 11, 1726 (2022). DOI: 10.21883/FTT.2022.11.53326.386 [Yu.N. Zhuravlev. Phys. Solid State 64, 11, 1700 (2022)]
  50. J. Sun, H. Wu, M. Mutailipu, Z. Yang, S. Pan. Dalton Trans. 48, 35, 13406 (2019). https://doi.org/10.1039/C9DT02842K
  51. Ю.Н. Журавлев, Д.В. Корабельников. Изв. РАН. Сер. физ. 86, 10, 1486 (2022). DOI: 10.31857/S0367676522100258 [Yu.N. Zhuravlev, D.V. Korabel'nikov. Bull. Russ. Academ. Sci. 86, 10, 1230 (2022)]
  52. W.F. Perger, J. Criswell, B. Civalleri, R. Dovesi. Comp. Phys. Commun. 180, 10, 1753 (2009). https://doi.org/10.1016/j.cpc.2009.04.022
  53. A. Erba, A. Mahmoud, R. Orlando, R. Dovesi. Phys. Chem. Minerals 41, 2, 151 (2014). https://doi.org/10.1007/s00269-013-0630-4
  54. Z. Hu, M. Lan, D. Huang, P. Huang, S. Wang. Crystals 12, 9, 1323 (2022). https://doi.org/10.3390/ cryst12091323
  55. M. Born, K. Huang. Dynamics Theory of Crystal Lattices. Oxford University Press, Oxford, UK (1954)
  56. F. Mouhat, F.-X. Coudert. Phys. Rev. B 90, 22, 224104 (2014). https://doi.org/10.1103/PhysRevB.90.224104
  57. H.A. Абдуллаев. ФТТ 48, 4, 623 (2006). [N.A. Abdullaev. Phys. Solid State 48, 4, 663 (2006)]
  58. P. Jund, R. Viennois, X.M. Tao, K. Niedziolka, J.C. Tedenac. Phys. Rev. B 85, 22, 224105 (2012). https://doi.org/10.1103/PhysRevB.85.224105
  59. W. Voigt. Lehrbuch der Kristallphysik. Teubner, Leipzig (1928). https://doi.org/10.1007/978-3-663-15884-4
  60. A. Reuss. Z. Angew. Math. Mech. 9, 1, 4958 (1929). https://doi.org/10.1002/zamm.19290090104
  61. R. Hill. J. Mechan. Phys. Solids 11, 5, 357 (1963). https://doi.org/10.1016/0022-5096(63)90036-X
  62. Ю.Н. Журавлев. Изв. АлтГУ. Физика 1, 123, 23 (2022). https://doi.org/10.14258/izvasu(2022)1-03
  63. Y. Zhuravlev, V. Atuchin. Molecules 27, 20, 6840 (2022). https://doi.org/10.3390/molecules27206840
  64. S.F. Pugh. The London, Edinburgh, and Dublin Philos. Mag. J. Sci. 45, 367, 823 (1954)
  65. Y. Zhou, B. Liu. J. Eur. Ceram. Soc. 33, 13-14, 2817 (2013). http://dx.doi.org/10.1016/j.jeurceramsoc.2013.04.020
  66. O.L. Anderson. J. Phys. Chem. Solids 24, 7, 909 (1963). https://doi.org/10.1016/0022-3697(63)90067-2
  67. R.E. Menchon, F. Torresi, J. Lasave, S. Koval. Condens. Matter Phys. 25, 4, 43709 (2022). https://doi.org/10.48550/arXiv.2301.01538
  68. D.R. Clarke. Surf. Coat. Technol. 163-164, 67 (2003). https://doi.org/10.1016/S0257-8972(02)00593-5
  69. A. Erba, Kh.E. El-Kelany, M. Ferrero, I. Baraille, M. Rerat. Phys. Rev. B 88, 3, 035102 (2013). DOI: 10.1103/PhysRevB.88.035102
  70. P. Krempl, G. Schleinzer, W. Wallnofer. Sensors. Actuators A 61, 1-3, 361 (1997). https://doi.org/10.1016/S0924-4247(97)80289-0
  71. C.R. Bowen, V.Y. Topolov, A.K. Hyunsun. Modern Piezoelectric Energy-Harvesting Materials (Springer Series in Materials Science, 238). Springer Int. Publishing, Imprit, Springer (2016)
  72. E.J.L. Gomes, S.G.C. Moreira, A.S. de Menezes, A.O. dos Santos, D.P. Pereira, P.C. de Oliveira, C.M.R. Remedios. J. Synchrotron Rad. 17, Part 6, 810 (2010). https://doi.org/10.1107/S0909049510039956
  73. G. Clementi, F. Cottone, A. Di Michele, L. Gammaitoni, M. Mattarelli, G. Perna, M. Lopez-Suarez, S. Baglio, C. Trigona, I. Neri. Energies 15, 17, 6227 (2022). https:// doi.org/10.3390/en15176227
  74. Y. Wang, D. Sun, J. Chen, C. Shen, G. Liu, D. Wang, S. Wang. Optik 251, 168481 (2022). https://doi.org/10.1016/j.ijleo.2021.168481
  75. P. Santhanaraghavan, P. Ramasamy. Sci. Technol. 2, 53 (2001). DOI: 10.1016/B0-08-043152-6/00010-3
  76. G.M. Meyer, R.J. Nelmes, C. Vettier. J. Phys. C 13, 21, 4035 (1980). https://iopscience.iop.org/article/10.1088/0022-3719/13/21/009
  77. K. Manimekalai, P. Jayaprakash, N. Padmamalini, S. Rama. J. Mater. Sci.: Mater. Electron. 34, 171 (2023). https://doi.org/10.1007/s10854-022-09594-8
  78. P.S. Halasyamani, W. Zhang. Inorg. Chem. 56, 3, 12077 (2017). DOI: 10.1021/acs.inorgchem.7b02184
  79. H.A.R. Aliabad, M. Fathabadi, I. Ahmad. Int. J. Quantum Chem. 113, 6, 865 (2012). https://doi.org/10.1002/qua.24258

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.