Radiation hardness of bipolar transistor based integrated circuits improved by ECR hydrogen plasma treatment and Si-wafers gettering
Polushkin E. A.1,2, Nefediev S. V.2, Soltanovich O. A.1, Kovalchuk A. V.1, Shapoval S. Yu.1
1Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, Chernogolovka, Russia
2Molecular Electronics Research Institute, Moscow, Russia
Email: epolushkin@niime.ru, snefedev@niime.ru, solt@iptm.ru, anatoly-fizmat@mail.ru, shapoval@iptm.ru

PDF
We demonstrate significant improvement of the radiation immunity of the integrated circuits based on silicon bipolar transistors. Strong decrease of the current gain degradation and significant yield improvement after high-energy gamma irradiation are both shown. This was achieved by development of efficient hydrogenation process for the silicon bulk and the surface dielectric layer using electron cyclotron resonance (ECR) plasma, as well as implementation of effective Si-wafer gettering option. Keywords: integrated circuits, bipolar transistors, ECR-plasma, hydrogenation of semiconductor structures, trap state passivation, gettering of semiconductor wafers, γ-irradiation, radiation hardness, yield of workable transistors.
  1. S.R. Kulkarni, M. Ravindra, G.R. Joshi, R. Damle. Nucl. Instrum. Meth. B, 251, 157 (2006). https://doi.org/10.1016/j.nimb.2006.05.028
  2. Sanaa A. Kamh, F.A.S. Soliman. Nucl. Instrum. Meth. A, 564 (1), 463 (2006). https://doi.org/10.1016/j.nima.2006.03.048
  3. J.P. Raymond, E.L. Petersen. IEEE Trans. Nucl. Sci., 34 (6), 1621 (1987). https://doi.org/10.1109/TNS.1987.4337526
  4. A.H. Johnston, G.M. Swift, B.G. Rax. IEEE Trans. Nucl. Sci., 41 (6), 2427 (1994). https://doi.org/10.1109/23.340598
  5. M. Manghisoni, L. Ratti, V. Re, V. Speziali, G. Traversi, G. Fallica. Nucl. Instrum. Meth. A, 518 (1-2), 477 (2004). https://doi.org/10.1016/j.nima.2003.11.062
  6. A. Al-Mohamad, M. Chahoud. Nucl. Instrum. Meth. A, 538 (1-3), 703 (2005). https://doi.org/10.1016/j.nima.2004.08.108
  7. Xingji Li, Jingdong Xiao, Chaoming Liu, Zhiming Zhao, Hongbin Geng, Mujie Lan, Dezhuang Yang, Shiyu He. Nucl. Instrum. Meth. A, 621 (1-3), 707 (2010). https://doi.org/10.1016/j.nima.2010.04.068
  8. Yu. M. Kobzev, D.P. Frolov, A.V. Enns, V.I. Enns, S.A. Osokin. Trudy FGUP NPTSAP. Sistemy i pribory upravleniya [Proc. of the Federal State Unitary Enterprise, Control systems and device, in Russian, 4, 17 (2010)]
  9. Cor Claeys, Eddy Simoen. Radiation Effects in Advanced Semiconductor Materials and Devices [Part of the Springer Series in Materials Science book series (SSMATERIALS, 57)], pp. 1-350, (Berlin, Germany: Springer Verlag, 2002). https://doi.org/10.1007/978- 3-662-04974-7
  10. G.P. Summers, E.A. Burke, C.J. Dale, E.A. Wolicki, P.W. Marshall, M.A. Gehlhausen. IEEE Trans. Nucl. Sci., 34 (6), 1133 (1987). https://doi.org/10.1109/TNS.1987.4337442
  11. J. Assaf. Chinese Physics B, 27 (1), 016103 (2018). https://iopscience.iop.org/article/10.1088/1674-1056/27/1/ 016103
  12. S.L. Kosier, R.D. Schrimpf, R.N. Nowlin, D.M. Fleetwood, M. DeLaus, R.L. Pease, W.E. Combs, A. Wei, F. Chai. IEEE Trans. Nucl. Sci., 40 (6), 1276 (1993). https://doi.org/10.1109/23.273541
  13. R.N. Nowlin, E.W. Enlow, R.D. Schrimpf, W.E. Combs. IEEE Trans. Nucl. Sci., 39 (6), 2026 (1992). https://doi.org/10.1109/23.211400
  14. A.S. Zubrilov, S.V. Koveshnikov. Fizika i Tekhnika Poluprovodnikov, in Russian, 25 (8), 1332 (1991). Online Available: https://www.mathnet.ru/links/ e0b6e70878a8187d85a5437dd757bd41/phts4394.pdf
  15. J.W. Corbett, G. D. Watkins, R. S. McDonald. Phys. Rev., 135 (5A), 1381 (1964). https://doi.org/10.1103/PhysRev.135.A1381
  16. N.A. Yarykin, J. Weber. Semiconductors, 44 (8), 983 (2010). https://doi.org/10.1134/S1063782610080038
  17. N. Yarykin, S. Lastovskii, J. Weber. Phys. Status Solidi, 13 (5), 1800651 (2019). https://onlinelibrary.wiley.com/doi/10.1002/pssr.201800651
  18. N.V. Shlopak, Yu.A. Bumai, A.G. Ulyashin. Phys. Status Solidi A, 137 (1), 165 (1993). https://doi.org/10.1002/pssa.2211370113
  19. I.G. Batyrev, D. Hughart, R. Durand, M. Bounasser, B.R. Tuttle, D.M. Fleetwood, R.D. Schrimpf, S.N. Rashkeev, G.W. Dunham, M. Law, S.T. Pantelides. IEEE Trans. Nucl. Sci., 55 (6), 3039 (2008). https://doi.org/10.1109/TNS.2008.2009353
  20. S.M. Sze, Kwok K. Ng. Physics ofe Semiconductor Devices. 3rd edn. (John Wiley \& Sons, Hoboken-N.J., 2007) chap. 4, p. 197
  21. L. Fabry, R. Hoelzl, A. Andrukhiv, K. Matsumoto, J. Qiu, S. Koveshnikov, M. Goldstein, A. Grabau, H. Horie, R. Takeda. J. Electrochem. Sos., 153 (6), g566 (2006). https://doi.org/10.1149/1.2186799
  22. C. Herring, N.M. Johnson. Semiconductors and Semimetals [ed. by J.I. Pankove, N.M. Johnson; v. 34: Hydrogen in Semiconductors: Hydrogen in Silicon, ed. by Robert K. Willardson and Albert C. Beer (Treatise eds); Chap. 10, Hydrogen Migration and Solubility in Silicon, pp. 225-347, (Academic Press, Inc., San Diego, 1991)]
  23. J.I. Pankove, D.E. Carlson, J.E. Berkeyheiser, R.O. Wance. Phys. Rev. Lett., 51 (24), 2224 (1983). https://doi.org/10.1103/PhysRevLett.51.2224
  24. Conyers Herring, N.M. Johnson, Chris G. Van de Walle. Phys. Rev. B, 64 (12), 125209 (2001). https://doi.org/10.1103/PhysRevB.64.125209
  25. E.A. Polushkin, S.V. Nefediev, A.V. Kovalchuk, O.A. Soltanovich, S.Yu. Shapoval. International Conference on Micro- and Nano-Electronics 2021, Proc. of SPIE 0277-786X, 12157, 1215711 (2022). https://doi.org/10.1117/12.2624184
  26. A. Kovalchuk, G. Beshkov, S. Shapoval. J. Res. Phys., 31 (1), 37 (2007). https://www.researchgate.net/publication/ 277125029
  27. A.V. Kovalchuk, S.U. Shapoval, S.S. Lebedev, S.A. Steblin, A.V. Volosov, N.I. Kargin. Vestnik Natsionalnogo issledovatelskogo jadernogo universiteta "MIFI", in Russian, 3 (2), 189 (2014). https://doi.org/10.1134/S2304487X14020126
  28. R.R. Brown. Proton and Electron Permanent Damage in Silicon Semiconductor Devices [Boeing Corp., Boeing Rep. D2-90570 (Chicago HQ, IL 60606, USA, 1964)].

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru