Determination of the AlN nucleation layer thickness formed on the Al2O3(0001) surface during nitridation process by XPS and IR spectroscopy
Milakhin D. S. 1,2, Malin T. V. 1, Mansurov V. G. 1, Kozhukhov A. S.1, Novikova N. N.3, Yakovlev V. A.3, Zhuravlev K. S.1
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State Technical University, Novosibirsk, Russia
3Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia
Email: dmilakhin@isp.nsc.ru, mansurov@isp.nsc.ru

PDF
The effect of different degrees of the sapphire surface nitridation process completion on the AlN buffer layer morphology has been studied. It was found that ~85% completion of the AlN crystalline phase formation promotes the growth of a two dimensional AlN buffer layer with a smooth surface morphology, regardless of the substrate temperature and ammonia flux. In contrast, during the AlN nucleation layer formation as a result of weak or excessive sapphire nitridation, a polycrystalline or three-dimensional AlN structures with a high density of inversion domains, respectively, were formed. Using independent methods of X-ray photoelectron spectroscopy and infrared spectroscopy of surface polaritons, the thickness of the AlN nucleation layer was determined at ~85% degree of the nitridation process completion, which amounted to ~1 monolayer. Keywords: ammonia molecular beam epitaxy, AlN, sapphire, reflection high-energy electron diffraction, nitridation, inversion domains, X-ray photoelectron spectroscopy, surface polaritons.
  1. I. Akasaki. Rev. Mod. Phys., 87 (4), 1119 (2015). DOI: 10.1103/RevModPhys.87.1119
  2. H. Amano. Rev. Mod. Phys., 87 (4), 1133 (2015). DOI: 10.1103/RevModPhys.87.1133
  3. S. Nakamura. Rev. Mod. Phys., 87 (4), 1139 (2015). DOI: 10.1103/RevModPhys.87.1139
  4. Y. Taniyasu, M. Kasu, T. Makimoto. Nature, 441 (7091), 325 (2006). DOI: 10.1038/nature04760
  5. R.A. Ferreyra, C. Zhu, A. Teke, H. Morkoc. Group III Nitrides, ed. by S. Kasap, P. Capper (Springer International Publishing AG, 2017), Pt D (31), 743 (2017). DOI: 10.1007/978-3-319-48933-9
  6. C.L. Freeman, C. Frederik, L.A. Neil, H.H. John. Phys. Rev. Lett., 96 (6), 066102 (2006). DOI: 10.1103/PhysRevLett.96.066102
  7. H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci. Phys. Rev. B, 80 (15), 155453 (2009). DOI: 10.1103/PhysRevB.80.155453
  8. A.L. Ivanovskiy. Uspekhi khimii, 81 (7), 571 (2012). [A.L. Ivanovskii. Russ. Chem. Rev., 81 (7), 571 (2012)] (in Russian). DOI: 10.1070/RC2012v081n07ABEH004302
  9. C.J.F. Solano, A. Costales, E. Francisco, A. Marti n Pendas, M.A. Blanco, K.-C. Lau, H. He, R. Pandey. Comput. Model. Eng. Sci., 24 (2), 143 (2008)
  10. M. Houssa, G. Pourtois, V.V. Afanas'ev, A. Stesmans. Appl. Phys. Lett., 97 (11), 112106 (2010). DOI: 10.1063/1.3489937
  11. V. Mansurov, T. Malin, Yu. Galitsyn, K. Zhuravlev. J. Cryst. Growth, 428, 93 (2015). DOI: 10.1016/j.jcrysgro.2015.07.030
  12. V.G. Mansurov, Yu.G. Galitsyn, T.V. Malin, S.A. Teys, K.S. Zhuravlev, I. Cora, B. Pecz. 2D Materials, ed. by Ch. Wongchoosuk and Y. Seekaew (IntechOpen, 2018). DOI: 10.5772/intechopen.81775
  13. H. Kawakami, K. Sakurai, K. Tsubouchi, N. Mikoshiba. Jpn. J. Appl. Phys., 27 (2), L161 (1988). DOI: 10.1143/jjap.27.l161
  14. J.L. Rouviere, M. Arlery, R. Niebuhr, K.H. Bachem, O. Briot. Mater. Sci. Eng. B, 43 (1-3), 161 (1997). DOI: 10.1016/s0921-5107(96)01855-7
  15. S. Mohn, N. Stolyarchuk, T. Markurt, R. Kirste, M.P. Hoffmann, R. Collazo, A. Courville, R.D. Felice, Z. Sitar, P. Vennegu\`es, M. Albrecht. Phys. Rev. Appl., 5 (5), 054004 (2016). DOI: 10.1103/PhysRevApplied.5.054004
  16. N. Stolyarchuk, T. Markurt, A. Courville, K. March, O. Tottereau, P. Vennegu\`es, M. Albrecht. J. Appl. Phys., 122 (15), 155303 (2017). DOI: 10.1063/1.5008480
  17. K. Uchida, A. Watanabe, F. Yano, M. Kouguchi, T. Tanaka, S. Minagawa. J. Appl. Phys., 79 (7), 3487 (1996). DOI: 10.1063/1.361398
  18. N. Grandjean, J. Massies, M. Leroux. Appl. Phys. Lett., 69 (14), 2071 (1996). DOI: 10.1063/1.116883
  19. C. Heinlein, J. Grepstad. Appl. Phys. Lett., 71 (3), 341 (1997). DOI: 10.1063/1.119532
  20. F. Dwikusuma, T.F. Kuech. J. Appl. Phys., 94 (9), 5656 (2003). DOI: 10.1063/1.1618357
  21. D.S. Milakhin, T.V. Malin, V.G. Mansurov, Yu.G. Galitsyn, K.S. Zhuravlev. J. Therm. Anal. Calorim., 133 (11), 1099 (2018). DOI: 10.1007/s10973-018-7116-z
  22. K. Masu, Y. Nakamura, T. Yamazaki, T. Shibata, M. Takahashi, K. Tsubouchi. Jpn. J. Appl. Phys., 34 (6B), L760 (1995). DOI: 10.1143/JJAP.34.L760
  23. Y. Cho, Y. Kim, E. R. Weber, S. Ruvimov, Z.L. Weber. J. Appl. Phys., 85, 7909 (1999). DOI: 10.1063/1.370606
  24. V.M. Agranovich, D.L. Mills (eds). Surface Polaritons (North-Holland Publ. Co., Amsterdam, 1982)
  25. G.N. Zhizhin, M.A. Moskaleva, E.A. Vinogradov, V.A. Yakovlev. Appl. Spectrosc. Rev., 18, 171 (1982)
  26. T.V. Malin, V.G. Mansurov, A.M. Gilinskii, D.Yu. Protasov, A.S. Kozhukhov, A.P. Vasilenko, K.S. Zhuravlev. Optoelectron. Instrument. Proc., 49, 429 (2013). DOI: 10.3103/S8756699013050026
  27. D.S. Milakhin, T.V. Malin, V.G. Mansurov, Yu.G. Galitsyn, A.S. Kozhukhov, D.E. Utkin, K.S. Zhuravlev. Appl. Surf. Sci., 541, 148548 (2021). DOI: 10.1016/j.apsusc.2020.148548
  28. W. Theib. The SCOUT through CAOS, Manual of the Windows application SCOUT
  29. W. Theib. Surf. Sci. Rep., 29, 91 (1997)
  30. D.S. Milakhin, T.V. Malin, V.G. Mansurov, Yu.G. Galitsyn, K.S. Zhuravlev. Phys. Status Solidi B, 256, 1800516 (2019). DOI: 10.1002/pssb.201800516

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru