Milakhin D. S.
1,2, Malin T. V.
1, Mansurov V. G.
1, Kozhukhov A. S.
1, Novikova N. N.
3, Yakovlev V. A.
3, Zhuravlev K. S.
11Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State Technical University, Novosibirsk, Russia
3Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia
Email: dmilakhin@isp.nsc.ru, mansurov@isp.nsc.ru
The effect of different degrees of the sapphire surface nitridation process completion on the AlN buffer layer morphology has been studied. It was found that ~85% completion of the AlN crystalline phase formation promotes the growth of a two dimensional AlN buffer layer with a smooth surface morphology, regardless of the substrate temperature and ammonia flux. In contrast, during the AlN nucleation layer formation as a result of weak or excessive sapphire nitridation, a polycrystalline or three-dimensional AlN structures with a high density of inversion domains, respectively, were formed. Using independent methods of X-ray photoelectron spectroscopy and infrared spectroscopy of surface polaritons, the thickness of the AlN nucleation layer was determined at ~85% degree of the nitridation process completion, which amounted to ~1 monolayer. Keywords: ammonia molecular beam epitaxy, AlN, sapphire, reflection high-energy electron diffraction, nitridation, inversion domains, X-ray photoelectron spectroscopy, surface polaritons.
- I. Akasaki. Rev. Mod. Phys., 87 (4), 1119 (2015). DOI: 10.1103/RevModPhys.87.1119
- H. Amano. Rev. Mod. Phys., 87 (4), 1133 (2015). DOI: 10.1103/RevModPhys.87.1133
- S. Nakamura. Rev. Mod. Phys., 87 (4), 1139 (2015). DOI: 10.1103/RevModPhys.87.1139
- Y. Taniyasu, M. Kasu, T. Makimoto. Nature, 441 (7091), 325 (2006). DOI: 10.1038/nature04760
- R.A. Ferreyra, C. Zhu, A. Teke, H. Morkoc. Group III Nitrides, ed. by S. Kasap, P. Capper (Springer International Publishing AG, 2017), Pt D (31), 743 (2017). DOI: 10.1007/978-3-319-48933-9
- C.L. Freeman, C. Frederik, L.A. Neil, H.H. John. Phys. Rev. Lett., 96 (6), 066102 (2006). DOI: 10.1103/PhysRevLett.96.066102
- H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci. Phys. Rev. B, 80 (15), 155453 (2009). DOI: 10.1103/PhysRevB.80.155453
- A.L. Ivanovskiy. Uspekhi khimii, 81 (7), 571 (2012). [A.L. Ivanovskii. Russ. Chem. Rev., 81 (7), 571 (2012)] (in Russian). DOI: 10.1070/RC2012v081n07ABEH004302
- C.J.F. Solano, A. Costales, E. Francisco, A. Marti n Pendas, M.A. Blanco, K.-C. Lau, H. He, R. Pandey. Comput. Model. Eng. Sci., 24 (2), 143 (2008)
- M. Houssa, G. Pourtois, V.V. Afanas'ev, A. Stesmans. Appl. Phys. Lett., 97 (11), 112106 (2010). DOI: 10.1063/1.3489937
- V. Mansurov, T. Malin, Yu. Galitsyn, K. Zhuravlev. J. Cryst. Growth, 428, 93 (2015). DOI: 10.1016/j.jcrysgro.2015.07.030
- V.G. Mansurov, Yu.G. Galitsyn, T.V. Malin, S.A. Teys, K.S. Zhuravlev, I. Cora, B. Pecz. 2D Materials, ed. by Ch. Wongchoosuk and Y. Seekaew (IntechOpen, 2018). DOI: 10.5772/intechopen.81775
- H. Kawakami, K. Sakurai, K. Tsubouchi, N. Mikoshiba. Jpn. J. Appl. Phys., 27 (2), L161 (1988). DOI: 10.1143/jjap.27.l161
- J.L. Rouviere, M. Arlery, R. Niebuhr, K.H. Bachem, O. Briot. Mater. Sci. Eng. B, 43 (1-3), 161 (1997). DOI: 10.1016/s0921-5107(96)01855-7
- S. Mohn, N. Stolyarchuk, T. Markurt, R. Kirste, M.P. Hoffmann, R. Collazo, A. Courville, R.D. Felice, Z. Sitar, P. Vennegu\`es, M. Albrecht. Phys. Rev. Appl., 5 (5), 054004 (2016). DOI: 10.1103/PhysRevApplied.5.054004
- N. Stolyarchuk, T. Markurt, A. Courville, K. March, O. Tottereau, P. Vennegu\`es, M. Albrecht. J. Appl. Phys., 122 (15), 155303 (2017). DOI: 10.1063/1.5008480
- K. Uchida, A. Watanabe, F. Yano, M. Kouguchi, T. Tanaka, S. Minagawa. J. Appl. Phys., 79 (7), 3487 (1996). DOI: 10.1063/1.361398
- N. Grandjean, J. Massies, M. Leroux. Appl. Phys. Lett., 69 (14), 2071 (1996). DOI: 10.1063/1.116883
- C. Heinlein, J. Grepstad. Appl. Phys. Lett., 71 (3), 341 (1997). DOI: 10.1063/1.119532
- F. Dwikusuma, T.F. Kuech. J. Appl. Phys., 94 (9), 5656 (2003). DOI: 10.1063/1.1618357
- D.S. Milakhin, T.V. Malin, V.G. Mansurov, Yu.G. Galitsyn, K.S. Zhuravlev. J. Therm. Anal. Calorim., 133 (11), 1099 (2018). DOI: 10.1007/s10973-018-7116-z
- K. Masu, Y. Nakamura, T. Yamazaki, T. Shibata, M. Takahashi, K. Tsubouchi. Jpn. J. Appl. Phys., 34 (6B), L760 (1995). DOI: 10.1143/JJAP.34.L760
- Y. Cho, Y. Kim, E. R. Weber, S. Ruvimov, Z.L. Weber. J. Appl. Phys., 85, 7909 (1999). DOI: 10.1063/1.370606
- V.M. Agranovich, D.L. Mills (eds). Surface Polaritons (North-Holland Publ. Co., Amsterdam, 1982)
- G.N. Zhizhin, M.A. Moskaleva, E.A. Vinogradov, V.A. Yakovlev. Appl. Spectrosc. Rev., 18, 171 (1982)
- T.V. Malin, V.G. Mansurov, A.M. Gilinskii, D.Yu. Protasov, A.S. Kozhukhov, A.P. Vasilenko, K.S. Zhuravlev. Optoelectron. Instrument. Proc., 49, 429 (2013). DOI: 10.3103/S8756699013050026
- D.S. Milakhin, T.V. Malin, V.G. Mansurov, Yu.G. Galitsyn, A.S. Kozhukhov, D.E. Utkin, K.S. Zhuravlev. Appl. Surf. Sci., 541, 148548 (2021). DOI: 10.1016/j.apsusc.2020.148548
- W. Theib. The SCOUT through CAOS, Manual of the Windows application SCOUT
- W. Theib. Surf. Sci. Rep., 29, 91 (1997)
- D.S. Milakhin, T.V. Malin, V.G. Mansurov, Yu.G. Galitsyn, K.S. Zhuravlev. Phys. Status Solidi B, 256, 1800516 (2019). DOI: 10.1002/pssb.201800516
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.